17.已知定義在R上的函數(shù)f(x)滿足:y=f(x-1)的圖象關(guān)于(1,0)點對稱,且當(dāng)x≥0時恒有f(x+2)=f(x),當(dāng)x∈[0,2)時,f(x)=ex-1,則f(2016)+f(-2017)=(  )(其中e為自然對數(shù)的底)
A.1-eB.e-1C.-1-eD.e+1

分析 根據(jù)圖象的平移可知y=f(x)的圖象關(guān)于(0,0)點對稱,可得函數(shù)為奇函數(shù),由題意可知當(dāng)x≥0時,函數(shù)為周期為2的周期函數(shù),可得f(2016)+f(-2017)=f(0)-f(1),求解即可

解答 解:∵y=f(x-1)的圖象關(guān)于(1,0)點對稱,
∴y=f(x)的圖象關(guān)于(0,0)點對稱,
∴函數(shù)為奇函數(shù),
∵當(dāng)x≥0時恒有f(x+2)=f(x),當(dāng)x∈[0,2)時,f(x)=ex-1,
∴f(2016)+f(-2017)
=f(2016)-f(2017)
=f(0)-f(1)
=0-(e-1)
=1-e.
故選:A.

點評 本題主要考查了函數(shù)圖象的平移,奇函數(shù)的性質(zhì)和函數(shù)的周期性.難點是對知識的綜合應(yīng)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知三棱錐P-ABC,PA=BC=5,PB=AC=$\sqrt{34}$,PC=AB=$\sqrt{41}$,則此三棱錐的體積是160.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.如圖,△ABC是直角三角形,∠ABC=90°,PA⊥平面ABC,此圖中直角三角形的個數(shù)為(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知等差數(shù)列{an}的前n項和為Sn,且滿足S4=24,S7=63.
(1)求數(shù)列{an}的通項公式;
(2)若bn=2an,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知P為曲線$C:\left\{\begin{array}{l}x=3cosθ\\ y=4sinθ\end{array}\right.$(θ為參數(shù),0≤θ≤π)上一點,O為坐標(biāo)原點,若直線OP的傾斜角為$\frac{π}{4}$,則P點的坐標(biāo)為$({\frac{12}{5},\frac{12}{5}})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.在長方體ABCD-A1B1C1D1中,M為AC與BD的交點.若$\overrightarrow{{A_1}{B_1}}$=$\overrightarrow a$,$\overrightarrow{{A_1}{D_1}}$=$\overrightarrow b$,$\overrightarrow{{A_1}A}$=$\overrightarrow c$,則下列向量中與$\overrightarrow{{A_1}M}$相等的向量是( 。
A.-$\frac{1}{2}$$\overrightarrow a$+$\frac{1}{2}$$\overrightarrow b$+$\overrightarrow c$B.$\frac{1}{2}$$\overrightarrow a$+$\frac{1}{2}$$\overrightarrow b$+$\overrightarrow c$C.$\frac{1}{2}$$\overrightarrow a$-$\frac{1}{2}$$\overrightarrow b$+$\overrightarrow c$D.-$\frac{1}{2}$$\overrightarrow a$-$\frac{1}{2}$$\overrightarrow b$+$\overrightarrow c$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.(1)雙曲線與橢圓$\frac{x^2}{27}+\frac{y^2}{36}=1$有相同焦點,且焦點到漸近線的距離等于$\sqrt{5}$,求雙曲線的標(biāo)準(zhǔn)方程;
(2)已知頂點在原點,焦點在y軸上的拋物線被直線y=2x+1截得的弦長為$\sqrt{15}$,求拋物線的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知拋物線C:y2=6x的焦點為F,過點F的直線l交拋物線于兩點A,B,交拋物線的準(zhǔn)線于點C,若$\overrightarrow{FC}=3\overrightarrow{FA}$,則|FB|=6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,已知兩座燈塔A和B與海洋觀察站C的距離都等于1km,燈塔A在觀察站C的北偏東20°,燈塔B在觀察站C的南偏東40°,則求:燈塔A與燈塔B的距離.

查看答案和解析>>

同步練習(xí)冊答案