【題目】如圖,在四棱錐中,底面為直角梯形, ,平面底面, 為中點(diǎn), 是棱上的點(diǎn), .
(Ⅰ)若點(diǎn)是棱的中點(diǎn),求證: 平面;
(Ⅱ)求證:平面平面;
(Ⅲ)若二面角為,設(shè),試確定的值.
【答案】(I)詳見解析;(II)詳見解析;(III).
【解析】試題分析:(Ⅰ)連接交于,連接,證得,再利用線面平行的判定定理,證得平面;
(Ⅱ)因?yàn)?/span>為中點(diǎn),得到,進(jìn)而得到平面,利用面面垂直的判定定理,即可證明平面平面;
(Ⅲ)以為原點(diǎn),以的方向分別為軸, 軸的正方向,建立如圖所示的空間直角坐標(biāo)系,求得平面的一個(gè)法向量和平面中, ,利用向量的夾角公式,即可求得的值.
試題解析:
(Ⅰ)證明:連接交于,連接,
因?yàn)?/span>且,即且
所以四邊形為平行四邊形,且為中點(diǎn),
又因?yàn)?/span>是中點(diǎn),
所以,
因?yàn)?/span>平面, 平面
所以平面.
(Ⅱ)因?yàn)?/span>為中點(diǎn),
所以四邊形為平行四邊形,所以.
因?yàn)?/span>,所以,即.
又因?yàn)槠矫?/span>平面,且平面平面,
所以平面,
因?yàn)?/span>平面,
所以平面平面.
(Ⅲ)因?yàn)?/span>為的中點(diǎn),所以.
又因?yàn)槠矫?/span>平面,且平面平面,
所以平面
以為原點(diǎn),以的方向分別為軸, 軸的正方向,
建立如圖所示的空間直角坐標(biāo)系,
則點(diǎn), , , ,平面的一個(gè)法向量.
設(shè),則,,
因?yàn)?/span>
所以
在平面中, ,
因?yàn)槎娼?/span>為,
所以,
所以.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若是各項(xiàng)均為正數(shù)的數(shù)列的前項(xiàng)和,且.
(1)求的值;
(2)設(shè),且數(shù)列的前項(xiàng)和滿足對(duì)任意正整數(shù)恒成立,求實(shí)數(shù)的取值范圍;
(3)設(shè),問:是否存在正整數(shù),使得對(duì)一切正整數(shù)恒成立?若存在,請(qǐng)求出實(shí)數(shù)的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某物流公司引進(jìn)了一套無人智能配貨系統(tǒng),購買系統(tǒng)的費(fèi)用為80萬元,維持系統(tǒng)正常運(yùn)行的費(fèi)用包括保養(yǎng)費(fèi)和維修費(fèi)兩部分,每年的保養(yǎng)費(fèi)用為1萬元.該系統(tǒng)的維修費(fèi)為:第一年萬元,第二年萬元,第三年2萬元,…,依等差數(shù)列逐年遞增.
(1)求該系統(tǒng)使用n年的總費(fèi)用(包括購買設(shè)備的費(fèi)用);
(2)求該系統(tǒng)使用多少年報(bào)廢,使年平均費(fèi)用最少.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:的左、右焦點(diǎn)分別為,,點(diǎn)在橢圓上,滿足.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)直線過點(diǎn),且與橢圓只有一個(gè)公共點(diǎn),直線與的傾斜角互補(bǔ),且與橢圓交于異于點(diǎn)的兩點(diǎn),,與直線交于點(diǎn)(介于,兩點(diǎn)之間).
(i)求證:;
(ii)是否存在直線,使得直線、、、的斜率按某種順序能構(gòu)成等比數(shù)列?若能,求出的方程;若不能,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校在學(xué)校內(nèi)招募了名男志愿者和名女志愿者.將這名志愿者的身高編成如右莖葉圖(單位: ),若身高在以上(包括)定義為“高個(gè)子”,身高在以下(不包括)定義為“非高個(gè)子”,且只有“女高個(gè)子”才能擔(dān)任“禮儀小姐”.
(Ⅰ)如果用分層抽樣的方法從“高個(gè)子”和“非高個(gè)子”中抽取人,再從這人中選人,那么至少有一人是“高個(gè)子”的概率是多少?
(Ⅱ)若從所有“高個(gè)子”中選名志愿者,用表示所選志愿者中能擔(dān)任“禮儀小姐”的人數(shù),試寫出的分布列,并求的數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓M的方程為,直線l的方程為,點(diǎn)P在直線l上,過P點(diǎn)作圓M的切線,,切點(diǎn)為A,B.
(1)若,試求點(diǎn)P的坐標(biāo);
(2)求證:經(jīng)過A,P,M三點(diǎn)的圓必過定點(diǎn),并求出所有定點(diǎn)的坐標(biāo);
(3)設(shè)線段的中點(diǎn)為N,求點(diǎn)N的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(2016·全國(guó)Ⅲ卷)已知數(shù)列{an}的前n項(xiàng)和Sn=1+λan,其中λ≠0.
(1)證明{an}是等比數(shù)列,并求其通項(xiàng)公式;
(2)若S5=,求λ.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,若acos2ccos2b,那么a,b,c的關(guān)系是( )
A.a+b=cB.a+c=2bC.b+c=2aD.a=b=c
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,且過點(diǎn).
(1)求橢圓的方程;
(2)若直線與橢圓交于兩點(diǎn)(點(diǎn)均在第一象限),且直線的斜率成等比數(shù)列,證明:直線的斜率為定值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com