【題目】如圖,在四棱錐中,底面為直角梯形, ,平面底面, 中點(diǎn), 是棱上的點(diǎn), .

(Ⅰ)若點(diǎn)是棱的中點(diǎn),求證: 平面;

(Ⅱ)求證:平面平面;

(Ⅲ)若二面角,設(shè),試確定的值.

【答案】I詳見解析;(II詳見解析;(III.

【解析】試題分析:連接,連接,證得,再利用線面平行的判定定理,證得平面

Ⅱ)因?yàn)?/span>中點(diǎn),得到,進(jìn)而得到平面,利用面面垂直的判定定理,即可證明平面平面;

為原點(diǎn),的方向分別為, 軸的正方向,建立如圖所示的空間直角坐標(biāo)系,求得平面的一個(gè)法向量和平面, ,利用向量的夾角公式,即可求得的值.

試題解析:

(Ⅰ)證明:連接,連接,

因?yàn)?/span>,即

所以四邊形為平行四邊形,且中點(diǎn),

又因?yàn)?/span>中點(diǎn),

所以,

因?yàn)?/span>平面, 平面

所以平面.

(Ⅱ)因?yàn)?/span>中點(diǎn),

所以四邊形為平行四邊形,所以.

因?yàn)?/span>,所以,即.

又因?yàn)槠矫?/span>平面,且平面平面,

所以平面,

因?yàn)?/span>平面,

所以平面平面.

(Ⅲ)因?yàn)?/span>的中點(diǎn),所以.

又因?yàn)槠矫?/span>平面,且平面平面,

所以平面

為原點(diǎn),以的方向分別為軸, 軸的正方向,

建立如圖所示的空間直角坐標(biāo)系,

則點(diǎn), , , ,平面的一個(gè)法向量.

設(shè),則,,

因?yàn)?/span>

所以

在平面中, ,

因?yàn)槎娼?/span>,

所以,

所以.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】是各項(xiàng)均為正數(shù)的數(shù)列的前項(xiàng)和,且.

1)求的值;

2)設(shè),且數(shù)列的前項(xiàng)和滿足對(duì)任意正整數(shù)恒成立,求實(shí)數(shù)的取值范圍;

3)設(shè),問:是否存在正整數(shù),使得對(duì)一切正整數(shù)恒成立?若存在,請(qǐng)求出實(shí)數(shù)的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某物流公司引進(jìn)了一套無人智能配貨系統(tǒng),購買系統(tǒng)的費(fèi)用為80萬元,維持系統(tǒng)正常運(yùn)行的費(fèi)用包括保養(yǎng)費(fèi)和維修費(fèi)兩部分,每年的保養(yǎng)費(fèi)用為1萬元.該系統(tǒng)的維修費(fèi)為:第一年萬元,第二年萬元,第三年2萬元,,依等差數(shù)列逐年遞增.

1)求該系統(tǒng)使用n年的總費(fèi)用(包括購買設(shè)備的費(fèi)用);

2)求該系統(tǒng)使用多少年報(bào)廢,使年平均費(fèi)用最少.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)分別為,,點(diǎn)在橢圓上,滿足.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)直線過點(diǎn),且與橢圓只有一個(gè)公共點(diǎn),直線的傾斜角互補(bǔ),且與橢圓交于異于點(diǎn)的兩點(diǎn),,與直線交于點(diǎn)介于,兩點(diǎn)之間).

(i)求證:;

(ii)是否存在直線,使得直線、、的斜率按某種順序能構(gòu)成等比數(shù)列?若能,求出的方程;若不能,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校在學(xué)校內(nèi)招募了名男志愿者和名女志愿者.將這名志愿者的身高編成如右莖葉圖(單位: ),若身高在以上(包括)定義為“高個(gè)子”,身高在以下(不包括)定義為“非高個(gè)子”,且只有“女高個(gè)子”才能擔(dān)任“禮儀小姐”.

(Ⅰ)如果用分層抽樣的方法從“高個(gè)子”和“非高個(gè)子”中抽取人,再從這人中選人,那么至少有一人是“高個(gè)子”的概率是多少?

(Ⅱ)若從所有“高個(gè)子”中選名志愿者,用表示所選志愿者中能擔(dān)任“禮儀小姐”的人數(shù),試寫出的分布列,并求的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓M的方程為,直線l的方程為,點(diǎn)P在直線l上,過P點(diǎn)作圓M的切線,切點(diǎn)為A,B.

1)若,試求點(diǎn)P的坐標(biāo);

2)求證:經(jīng)過AP,M三點(diǎn)的圓必過定點(diǎn),并求出所有定點(diǎn)的坐標(biāo);

3)設(shè)線段的中點(diǎn)為N,求點(diǎn)N的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(2016·全國(guó)Ⅲ卷)已知數(shù)列{an}的前n項(xiàng)和Sn1λan,其中λ≠0.

(1)證明{an}是等比數(shù)列,并求其通項(xiàng)公式;

(2)S5,求λ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,若acos2ccos2b,那么a,b,c的關(guān)系是(

A.a+bcB.a+c2bC.b+c2aD.abc

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,且過點(diǎn).

(1)求橢圓的方程;

(2)若直線與橢圓交于兩點(diǎn)(點(diǎn)均在第一象限),且直線的斜率成等比數(shù)列,證明:直線的斜率為定值.

查看答案和解析>>

同步練習(xí)冊(cè)答案