2.如圖,過拋物線y2=2px(p>0)的焦點(diǎn)F的直線l依次交拋物線及其準(zhǔn)線與點(diǎn)A,B,C,若BC|=2|BF|,且|AF|=3,則拋物線的方程是y2=3x.

分析 分別過點(diǎn)A,B作準(zhǔn)線的垂線,分別交準(zhǔn)線于點(diǎn)E,D,則BD=BF,故∠BCD=30°,于是AC=2AE,從而得出BD,利用△BCD∽△FCG得出p,從而得出拋物線方程.

解答 解:分別過點(diǎn)A,B作準(zhǔn)線的垂線,分別交準(zhǔn)線于點(diǎn)E,D,
設(shè)|BF|=a,則|BC|=2a,|BD|=a,∴∠BCD=30°,
在直角三角形ACE中,∵|AF|=3,|AC|=3+3a,
∴2|AE|=|AC|
∴3+3a=6,即a=1,
∵BD∥FG,
∴$\frac{1}{p}$=$\frac{2}{3}$,解得p=$\frac{3}{2}$,
∴拋物線方程為y2=3x.
故答案為:y2=3x.

點(diǎn)評(píng) 本題主要考查了拋物線的性質(zhì).考查了學(xué)生對(duì)拋物線的定義和基本知識(shí)的綜合把握.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.設(shè)a,b是互不垂直的兩條異面直線,則下列命題成立的是( 。
A.存在唯一平面α,使得a?α,且b∥αB.存在唯一直線l,使得l∥a,且l⊥b
C.存在唯一直線l,使得l⊥a,且l⊥bD.存在唯一平面α,使得a?α,且b⊥α

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)在一個(gè)周期內(nèi)的圖象如圖所示.
(1)求函數(shù)的解析式;
(2)將函數(shù)y=f(x)圖象向上平移1個(gè)單位,再將所得圖象上的點(diǎn)橫坐標(biāo)縮短為原來的$\frac{1}{2}$,縱坐標(biāo)不變,得到函數(shù)y=g(x)的圖象,求y=g(x)在[0,$\frac{π}{2}$]上的單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.正方形ABCD的邊長(zhǎng)為1,點(diǎn)E在邊AB上,點(diǎn)F在邊BC上,AE=BF=$\frac{3}{7}$,動(dòng)點(diǎn)P從E出發(fā)沿直線向F運(yùn)動(dòng),每當(dāng)碰到正方形的邊時(shí)反彈,反彈時(shí)反射角等于入射角.當(dāng)點(diǎn)P第一次碰到E時(shí),P與正方形的邊碰撞的次數(shù)為14.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.如圖,半徑為5cm的圓形紙板內(nèi)有一個(gè)相同圓心的半徑為1cm的小圓區(qū)域,現(xiàn)將半徑為1cm的一枚硬幣拋到此紙板上,使整塊硬幣隨機(jī)完全落在紙板內(nèi),則硬幣與小圓無公共點(diǎn)的概率為$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.解不等式:
(1)$x-\frac{4}{x-1}<1$;
 (2)|x-1|+|x+2|>4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.求值:已知$f(α)=\frac{{sin(π-α)cos(-α)cos(-α+\frac{3π}{2})}}{{cos(\frac{π}{2}-α)sin(-π-α)}}$
(1)化簡(jiǎn)f(α)
(2)若α是第二象限角,且$cos(α-\frac{5π}{2})=\frac{1}{5}$,求f(α)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知點(diǎn)M(-1,-2)是拋物線y2=2px(p>0)的準(zhǔn)線上一點(diǎn),A,B在拋物線上,點(diǎn)F為拋物線的焦點(diǎn),且有|AF|+|BF|=8,則線段AB的垂直平分線必過點(diǎn)( 。
A.(3,0)B.(5,0)C.(3,2)D.(5,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.設(shè)a為實(shí)數(shù),則下列不等式一定不成立的是( 。
A.2a>4aB.2lga<lgaC.a2+|a|≤0D.|a+$\frac{1}{a}}$|<2

查看答案和解析>>

同步練習(xí)冊(cè)答案