【題目】已知函數(shù),且上滿(mǎn)足恒成立.

1)求實(shí)數(shù)的值;

2)令上的最小值為,求證:.

【答案】12)證明見(jiàn)解析

【解析】

1)分別在兩種情況下討論導(dǎo)函數(shù)的正負(fù),得到原函數(shù)單調(diào)性,由此可知時(shí)不合題意,并求出時(shí),,則只需即可,令,利用導(dǎo)數(shù)可求得,結(jié)合,由此可確定僅有滿(mǎn)足條件;

2)利用導(dǎo)數(shù)和零點(diǎn)存在性定理可確定函數(shù)的單調(diào)性,得到,由可化簡(jiǎn)得到,代入解析式即可證得結(jié)論.

1)當(dāng)時(shí),原函數(shù)可化為:,則,

當(dāng)時(shí),,上單調(diào)遞增,

,當(dāng)時(shí),,不合題意;

當(dāng)時(shí),,

∴當(dāng)時(shí),;當(dāng)時(shí),,

上單調(diào)遞增,上單調(diào)遞減,

.

要使時(shí)恒成立,則只需,即.

,則,

∴當(dāng)時(shí),;當(dāng)時(shí),,

上單調(diào)遞減,在上單調(diào)遞增.

,滿(mǎn)足條件的只有,即.

2)由(1)知:,,

.

,則

,,即上單調(diào)遞增;

,

,使得,即,

且當(dāng)時(shí),;當(dāng)時(shí),,

上單調(diào)遞減;在上單調(diào)遞增,

,即,

,

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】方程x2+x10的解可視為函數(shù)yx+的圖象與函數(shù)y的圖象交點(diǎn)的橫坐標(biāo),若x4+ax40的各個(gè)實(shí)根x1,x2,xk(k≤4)所對(duì)應(yīng)的點(diǎn)(xi ,)i1,2,…,k)均在直線(xiàn)yx的同側(cè),則實(shí)數(shù)a的取值范圍是      .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知四棱錐的底面是邊長(zhǎng)為的菱形,,點(diǎn)E是棱BC的中點(diǎn),,點(diǎn)P在平面ABCD的射影為O,F(xiàn)為棱PA上一點(diǎn).

1求證:平面平面BCF;

2平面PDE,,求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)fx)=a1nxax+1aRa≠0).

1)求函數(shù)fx)的單調(diào)區(qū)間;

2)求證:n≥2,nN*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某少兒游泳隊(duì)需對(duì)隊(duì)員進(jìn)行限時(shí)的仰臥起坐達(dá)標(biāo)測(cè)試.已知隊(duì)員的測(cè)試分?jǐn)?shù)與仰臥起坐

個(gè)數(shù)之間的關(guān)系如下:;測(cè)試規(guī)則:每位隊(duì)員最多進(jìn)行三組測(cè)試,每組限時(shí)1分鐘,當(dāng)一組測(cè)完,測(cè)試成績(jī)達(dá)到60分或以上時(shí),就以此組測(cè)試成績(jī)作為該隊(duì)員的成績(jī),無(wú)需再進(jìn)行后續(xù)的測(cè)試,最多進(jìn)行三組;根據(jù)以往的訓(xùn)練統(tǒng)計(jì),隊(duì)員“喵兒”在一分鐘內(nèi)限時(shí)測(cè)試的頻率分布直方圖如下:

(1)計(jì)算值;

(2)以此樣本的頻率作為概率,求

①在本次達(dá)標(biāo)測(cè)試中,“喵兒”得分等于的概率;

②“喵兒”在本次達(dá)標(biāo)測(cè)試中可能得分的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)定義在R上的函數(shù)f(x)是最小正周期為2π的偶函數(shù),f'(x)f(x)的導(dǎo)函數(shù),當(dāng)x∈[0,π]時(shí),0≤f(x)≤1;當(dāng)x∈(0,π)x≠時(shí), ,則函數(shù)y=f(x)-|sinx|在區(qū)間上的零點(diǎn)個(gè)數(shù)為( )

A. 4 B. 6 C. 7 D. 8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】給出下面類(lèi)比推理:

①“若2a<2b,則a<b”類(lèi)比推出“若a2<b2,則a<b”;

②“(a+b)c=ac+bc(c≠0)”類(lèi)比推出“ (c≠0)”;

③“a,b∈R,若a-b=0,則a=b”類(lèi)比推出“a,b∈C,若a-b=0,則a=b”;

④“a,b∈R,若a-b>0,則a>b”類(lèi)比推出“a,b∈C,若a-b>0,則a>b(C為復(fù)數(shù)集)”.

其中結(jié)論正確的個(gè)數(shù)為(  )

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,設(shè)拋物線(xiàn)的焦點(diǎn)為F,點(diǎn)P是半橢圓上的一點(diǎn),過(guò)點(diǎn)P作拋物線(xiàn)C的兩條切線(xiàn),切點(diǎn)分別為AB,且直線(xiàn)PA、PB分別交y軸于點(diǎn)M、N

1)證明:;

(2)求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)有關(guān)于x的一元二次方程.

1)若a是從0、1、23四個(gè)數(shù)中任取的一個(gè)數(shù),是從0、12三個(gè)數(shù)中任取的一個(gè)數(shù),求上述方程沒(méi)有實(shí)根的概率.

2)若a是從區(qū)間內(nèi)任取的一個(gè)數(shù),,求上述方程沒(méi)有實(shí)根的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案