分析 由已知及正弦定理可求sinA=$\frac{\sqrt{3}}{2}$,進而可求A,∠CAD,BD,CD,由正弦定理可得b=$\frac{2}{\sqrt{3}}$sin∠2=$\frac{2}{\sqrt{3}}$sin∠1=$\frac{2}{\sqrt{3}}$$\frac{\frac{c}{2}}{\sqrt{3}}$=c,可求sinB=$\frac{1}{2}$,c=1,即可利用三角形面積公式計算得解.
解答 解:∵△ABC的外接圓半徑R為1,$a=\sqrt{3}$,
∴由正弦定理$\frac{a}{sinA}=2R$,
可得:sinA=$\frac{\sqrt{3}}{2}$,
∵邊BC上一點D滿足BD=2DC,
且∠BAD=90°,
∴A=120°,∠CAD=30°,
BD=$\frac{2}{3}$a=$\frac{2\sqrt{3}}{3}$,CD=$\frac{1}{3}$a=$\frac{\sqrt{3}}{3}$,
∴如圖,由正弦定理可得:$\frac{sin2}=\frac{\frac{1}{\sqrt{3}}}{\frac{1}{2}}$,可得:b=$\frac{2}{\sqrt{3}}$sin∠2=$\frac{2}{\sqrt{3}}$sin∠1=$\frac{2}{\sqrt{3}}$$\frac{\frac{c}{2}}{\sqrt{3}}$=c,
∴△BAC是等腰三角形,底角是30°,
∴sinB=$\frac{1}{2}$,可得:c=1,
∴S△ABC=$\frac{1}{2}×1×1×sin120°$=$\frac{\sqrt{3}}{4}$.
故答案為:$\frac{\sqrt{3}}{4}$.
點評 本題主要考查了正弦定理,三角形面積公式在解三角形中的應用,考查了數(shù)形結合思想,屬于中檔題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
分組 | 頻數(shù) | 頻率 |
[50,60) | 3 | 0.06 |
[60,70) | m | 0.10 |
[70,80) | 13 | n |
[80,90) | p | q |
[90,100] | 9 | 0.18 |
總計 | t | 1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com