【題目】如圖,有一塊邊長為1(百米)的正方形區(qū)域ABCD.在點A處有一個可轉動的探照燈,其照射角∠PAQ始終為45°(其中點P,Q分別在邊BC,CD上),設BP=t.
(I)用t表示出PQ的長度,并探求△CPQ的周長l是否為定值;
(Ⅱ)設探照燈照射在正方形ABCD內部區(qū)域的面積S(平方百米),求S的最大值.

【答案】解:(Ⅰ)由BP=t,得CP=1﹣t,0≤t≤1,
設∠PAB=θ,
則∠DAQ=45°﹣θ,
DQ=tan(45°﹣θ)=,CQ=1﹣=,
∴PQ===,
∴l(xiāng)=CP+CQ+PQ=1﹣t++=1﹣t+1+t=2,是定值
(Ⅱ)S=S正方形ABCD﹣S△ABP﹣S△ADQ=1×1﹣×1×t﹣×1×,
=1﹣t﹣=1﹣t﹣(﹣1+),
=1+,
=2﹣(+),
由于1+t>0,
則S=2﹣(+)≤2﹣2=2﹣,當且僅當=,即t=﹣1時等號成立,
故探照燈照射在正方形ABCD內部區(qū)域的面積S最多為2﹣平方百米.
【解析】(Ⅰ)由BP=t,得CP=1﹣t,0≤t≤1,設∠PAB=θ,則∠DAQ=45°﹣θ,分別求出CP,CQ,PQ即可得到求出周長l=2,問題得以解決;
(Ⅱ)根據(jù)S=S正方形ABCD﹣S△ABP﹣S△ADQ得到S=2﹣(+),根據(jù)基本不等式的性質即可求出S的最大值。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)=aex+ +b(a>0).
(Ⅰ)求f(x)在[0,+∞)內的最小值;
(Ⅱ)設曲線y=f(x)在點(2,f(2))處的切線方程為y= ,求a,b的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知等比數(shù)列{an}、等差數(shù)列{bn},滿足a1>0,b1=a1﹣1,b2=a2 , b3=a3且數(shù)列{an}唯一.
(1)求數(shù)列{an},{bn}的通項公式;
(2)求數(shù)列{anbn}的前n項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知A(1,0,0),B(0,1,0),C(0,0,2).

(1)若,求點D的坐標;

(2)問是否存在實數(shù)α,β,使得=α+β成立?若存在,求出α,β的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,正四棱柱ABCD-A1B1C1D1中,底面邊長為2,側棱長為4,E,F分別是棱AB,BC的中點,EF∩BD=G.求證:平面B1EF⊥平面BDD1B1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(本小題滿分12分)

如圖1,在Rt中,,.D、E分別是上的點,且,將沿折起到的位置,使,如圖2

)求證:平面平面;

)若,求與平面所成角的余弦值;

)當點在何處時,的長度最小,并求出最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知A、B、C、D是函數(shù)y=sin(ωx+φ)(ω>0,0<φ<)一個周期內的圖象上的四個點,如圖所示,A(﹣ , 0),B為y軸的點,C為圖象上的最低點,E為該函數(shù)圖象的一個對稱中心,B與D關于點E對稱,在x軸方向上的投影為
(1)求函數(shù)f(x)的解析式及單調遞減區(qū)間;
(2)將函數(shù)f(x)的圖象向左平移得到函數(shù)g(x)的圖象,已知g(α)= , α∈(﹣ , 0),求g(α+)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四邊形是平行四邊形,平面⊥平面,,,,,

(Ⅰ)求證:平面;

(Ⅱ)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy,曲線C1的參數(shù)方程為 (θ為參數(shù)),曲線C2的普通方程為以原點為極點,x軸的非負半軸為極軸建立極坐標系.

(1)求曲線C1的普通方程和C2的極坐標方程;

(2)A,B是曲線C2上的兩點OAOB,的值.

查看答案和解析>>

同步練習冊答案