分析 (I)拋物線x2=8$\sqrt{3}$y的焦點(diǎn)為$(0,2\sqrt{3})$.由題意可設(shè)橢圓的標(biāo)準(zhǔn)方程可得:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),則b=2$\sqrt{3}$,又$\frac{c}{a}$=$\frac{1}{2}$,a2=b2+c2,聯(lián)立解出即可得出.
(II)①把x=2代入橢圓方程可得:|PQ|=6.設(shè)A(x1,y1),B(x2,y2).直線AB的方程為:y=$\frac{1}{2}$x+t,代入橢圓方程可得:x2+tx+t2-12=0,△>0.|x1-x2|=$\sqrt{({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}}$.四邊形APBQ面積S=$\frac{1}{2}×$6×|x1-x2|,利用二次函數(shù)的單調(diào)性即可得出四邊形APBQ面積S取得的最大值.
②當(dāng)∠APQ=∠BPQ時(shí),直線PA,PB的斜率之和為0.設(shè)直線PA的斜率為k,則直線PB的斜率為-k.直線PA的方程為:y-3=k(x-2),與橢圓方程聯(lián)立化為:(3+4k2)x2+8(3-2k)kx+4(3-2k)2-48=0,利用根與系數(shù)的關(guān)系可得x1+2,同理PB的直線方程為:y-3=-k(x-2),可得x2+2.利用斜率計(jì)算公式可得kAB=$\frac{{y}_{1}-{y}_{2}}{{x}_{1}-{x}_{2}}$.
解答 解:(I)拋物線x2=8$\sqrt{3}$y的焦點(diǎn)為$(0,2\sqrt{3})$.
由題意可設(shè)橢圓的標(biāo)準(zhǔn)方程可得:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),
則b=2$\sqrt{3}$,又$\frac{c}{a}$=$\frac{1}{2}$,a2=b2+c2,
解得a=4,c=2.
∴橢圓C標(biāo)準(zhǔn)方程為:$\frac{{x}^{2}}{16}+\frac{{y}^{2}}{12}$=1.
(II)①把x=2代入橢圓方程可得:$\frac{4}{16}$+$\frac{{y}^{2}}{12}$=1,解得y=±3.∴|PQ|=6.
設(shè)A(x1,y1),B(x2,y2).直線AB的方程為:y=$\frac{1}{2}$x+t,代入橢圓方程可得:x2+tx+t2-12=0,
由△>0,可得:-4<t<4.
∴x1+x2=-t,x1x2=t2-12.
|x1-x2|=$\sqrt{({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}}$=$\sqrt{48-3{t}^{2}}$.
∴四邊形APBQ面積S=$\frac{1}{2}×$6×|x1-x2|=3$\sqrt{48-3{t}^{2}}$.
當(dāng)t=0時(shí),四邊形APBQ面積S取得最大值12$\sqrt{3}$.
②當(dāng)∠APQ=∠BPQ時(shí),直線PA,PB的斜率之和為0.設(shè)直線PA的斜率為k,則直線PB的斜率為-k.
直線PA的方程為:y-3=k(x-2),聯(lián)立$\left\{\begin{array}{l}{y-3=k(x-2)}\\{\frac{{x}^{2}}{16}+\frac{{y}^{2}}{12}=1}\end{array}\right.$.,化為:(3+4k2)x2+8(3-2k)kx+4(3-2k)2-48=0,
∴x1+2=$\frac{8k(2k-3)}{3+4{k}^{2}}$,
同理PB的直線方程為:y-3=-k(x-2),可得x2+2=$\frac{8k(2k+3)}{3+4{k}^{2}}$.
∴x1+x2=$\frac{16{k}^{2}-12}{3+4{k}^{2}}$,x1-x2=$\frac{-48k}{3+4{k}^{2}}$,
kAB=$\frac{{y}_{1}-{y}_{2}}{{x}_{1}-{x}_{2}}$=$\frac{k({x}_{1}-2)+3+k({x}_{2}-2)-3}{{x}_{1}-{x}_{2}}$=$\frac{k({x}_{1}+{x}_{2})-4k}{{x}_{1}-{x}_{2}}$=$\frac{1}{2}$.
∴直線AB的斜率為定值$\frac{1}{2}$.
點(diǎn)評(píng) 本題考查了拋物線與橢圓的標(biāo)準(zhǔn)方程及其性質(zhì)、直線橢圓相交問題、一元二次方程的根與系數(shù)的關(guān)系、弦長公式、斜率計(jì)算公式、二次函數(shù)的單調(diào)性,考查了推理能力與計(jì)算能力,屬于難題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{6}$ | B. | $\frac{1}{5}$ | C. | $\frac{1}{4}$ | D. | $\frac{1}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
資金 | 單位產(chǎn)品所需資金 | 資金供應(yīng)量 | |
空調(diào)機(jī) | 洗衣機(jī) | ||
成本 | 30 | 20 | 440 |
勞動(dòng)力:工資 | 7 | 10 | 156 |
單位利潤 | 10 | 8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 128 | B. | 81 | C. | 64 | D. | 49 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com