9.已知2sinα+cosα=0,求2sin2α-3sinαcosα-5cos2α=$-\frac{12}{5}$.

分析 求出正切函數(shù)值,化簡所求的表達式為正切函數(shù)的形式,求解即可.

解答 解:2sinα+cosα=0,可得tanα=-$\frac{1}{2}$.
2sin2α-3sinαcosα-5cos2α=$\frac{2si{n}^{2}α-3sinαcosα-5co{s}^{2}α}{si{n}^{2}α+co{s}^{2}α}$=$\frac{2ta{n}^{2}α-3tanα-5}{ta{n}^{2}α+1}$=$\frac{\frac{1}{2}+\frac{3}{2}-5}{\frac{1}{4}+1}$=-$\frac{12}{5}$.
故答案為:-$\frac{12}{5}$.

點評 本題考查三角函數(shù)的化簡求值,同角三角函數(shù)基本關(guān)系式的應(yīng)用,考查計算能力.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

19.在數(shù)列{an}中,a1=$\frac{1}{2}$,并且當n≥2時,an=$\frac{2S_n^2}{{2{S_n}-1}}$.
(1)求證數(shù)列$\{\frac{1}{S_n}\}$是等差數(shù)列;
(2)求數(shù)列{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.集合A含有10個元素,集合B含有8個元素,集合A∩B含有3個元素,則集合A∪B有15個元素.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知函數(shù)f(x)=$\left\{\begin{array}{l}{x^2}+bx+c,x≤0\\ 2,x>0\end{array}$且f(-4)=f(0),f(-2)=-2.
(1)求f(f(-1))的值;
(2)畫出這個函數(shù)的圖象;
(3)求關(guān)于x的方程f(x)=x的解.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.如果函數(shù)f(x)=$\frac{1}{2}$(m-2)x2+(n-8)x+1(m≥0,n≥0)在區(qū)間[$\frac{1}{2},2}$]上單調(diào)遞減,則mn的最大值為18.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.復數(shù)z=(a-2)+(a+1)i,a∈R對應(yīng)的點位于第二象限,則|z|的取值范圍是$[\frac{3\sqrt{2}}{2},3)$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.如圖,正方形ABCD與直角梯形ADEF中,ED⊥平面ABCD,AF∥DE,DE=DA=2AF=2.
(Ⅰ)求證:AC⊥BE;
(Ⅱ)求證:AC∥平面BEF.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知函數(shù)f(x)=x2+(2a-1)x-3.
(1)當a=2,x∈[-2,3]時,求函數(shù)f(x)的值域.
(2)若函數(shù)f(x)在[-1,3]上單調(diào)遞增,求實數(shù)a的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.若點P(1,1)在不等式組$\left\{\begin{array}{l}{mx+ny≤2}\\{ny-mx≤2}\\{ny>1}\end{array}\right.$表示的平面區(qū)域內(nèi),則z=m+2n的最大值為4.

查看答案和解析>>

同步練習冊答案