分析 (1)根據(jù)待定系數(shù)法,即可求出函數(shù)的解析式,
(2)描點畫圖即可,
(3)由f(x)=x,分段解得即可.
解答 解:(1)當(dāng)x≤0時,f(x)=x2+bx+c,且f(-4)=f(0),f(-2)=-2,
∴c=16-4b+c,4-2b+c=-2,
解得b=4,c=2,
∴f(x)=x2+4x+2,
∴f(-1))=1-4+2=-1,
∴f(f(-1))=f(-1)=-1,
(2)圖象如圖所示:
(3)∵f(x)=x,
當(dāng)x≤0時,x2+4x+2=x,解得x=-1或x=-2.
當(dāng)x>0時,x=2.
點評 本題考查了函數(shù)解析式的求法和函數(shù)圖象的畫法,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -1 | B. | 0 | C. | -1或0 | D. | a<-1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,-2) | B. | (-2,-1) | C. | (-1,1) | D. | (-∞,0) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{6}{5}$+$\frac{2}{5}$i | B. | $\frac{6}{5}$-$\frac{2}{5}$i | C. | -$\frac{6}{5}$+$\frac{2}{5}$i | D. | -$\frac{6}{5}$-$\frac{2}{5}$i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com