已知函數(shù)f(x)=
x2-6(x≥
3
或x≤-
3
)
-x2(-
3
<x<
3
)
,設(shè)0<m<n,且f(m)=f(n),則mn2的最大值為
 
考點(diǎn):函數(shù)的值
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:討論m的范圍,得到關(guān)于m,n的等式,然后將mn2值化為一個(gè)變量的形式,借助于求導(dǎo)求它的最大值.
解答: 解:①當(dāng)0<m<n<
3
時(shí),f(m)=f(n),得到m2=n2,得到m,n異號(hào),所以不滿足題意;
②當(dāng)0<m<
3
<n時(shí),由f(m)=f(n),得到-m2=n2-6,得到m2+n2=6,mn2=m(6-m2)=-m3+6m,
設(shè)y=-m3+6m,令y′=-3m2+6=0,解得m=±
2
,∵m>0,∴m=
2

當(dāng)m∈(0,
2
)時(shí),y=-m3+6m時(shí)增函數(shù),m∈(
2
,
3
)時(shí)是減函數(shù),
∴函數(shù)y=-m3+6m的最大值為m=
2
時(shí)y=4
2
;
∴mn2的最大值為4
2

故答案為:4
2
點(diǎn)評(píng):本題考查了分段函數(shù)解析式的運(yùn)用已經(jīng)利用導(dǎo)數(shù)求函數(shù)的最值,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系xOy中,動(dòng)點(diǎn)P到兩點(diǎn)F1(-1,0),F(xiàn)2(1,0)的距離之和為4,設(shè)P點(diǎn)軌跡為C.
(Ⅰ)求C的方程;
(Ⅱ)曲線C上不同的兩點(diǎn)A(x1,y1)、B(x2,y2)滿足:
AF2
F2B
,x1+x2=
1
2
,求λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=g(x)-t,若對(duì)?t∈R,f(x)恒有兩個(gè)零點(diǎn),則函數(shù)g(x)可為( 。
A、g(x)=2x+2-x
B、g(x)=2x-2-x
C、g(x)=log2x+
1
log2x
D、g(x)=log2x-
1
log2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

等腰直角三角形ACB中∠C=90°,CA=CB=a,點(diǎn)P在AB上,且
.
AP
.
AB
(0≤λ≤1),則
.
CA
.
CP
的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}中,a1=1,a2=3,且an+1=an+2an-1(n≥2,n∈N*).
(Ⅰ)設(shè)bn=an+1+λan,是否存在實(shí)數(shù)λ,使數(shù)列{bn}為等比數(shù)列.若存在,求出λ的值,若不存在,請(qǐng)說明理由;
(Ⅱ)求數(shù)列{an}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

“a=2”是“?x∈(0,+∞),ax+
1
8x
≥1”的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知Sn為數(shù)列{an}的前n項(xiàng)的和,滿足Sn=
t-tan
1-t
(n∈N*),其中t為常數(shù),且t≠0,t≠1.
(1)求通項(xiàng)an;
(2)若t=-
3
2
,設(shè)bn=(n+2)•an•ln|an|問數(shù)列{bn}的最大項(xiàng)是它的第幾項(xiàng)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2x+m(m∈R),且它的圖象經(jīng)過點(diǎn)(2,5).
(1)求實(shí)數(shù)m的值.
(2)求函數(shù)f(x)的定義域和值域,并畫出函數(shù)y=f(x)的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p:關(guān)于x的不等式ax>1,(a>0,a≠1)的解集是{x|x<0},命題q:函數(shù)y=lg(x2-x+a)的定義域?yàn)镽,若p∨q為真p∧q為假,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案