15.復(fù)數(shù)z對應(yīng)的點A落在虛軸的正半軸上,i為虛數(shù)單位且$|{\frac{z+i}{i}}|=2$,則z=(  )
A.iB.$\sqrt{3}i$C.2iD.3i

分析 設(shè)z=bi(b∈R且b>0),代入計算即可得出.

解答 解:設(shè)z=bi(b∈R且b>0),則|b+1|=2⇒b=1或b=-3(舍去),
∴z=i,
故選:A.

點評 本題考查了復(fù)數(shù)的有關(guān)概念及其運算法則、模的計算公式,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.設(shè)函數(shù)$f(x)=\left\{{\begin{array}{l}{cos\frac{πx}{3},x≥0}\\{-(x+\frac{4}{x}),x<0}\end{array}}\right.$,則f(f(-2))=( 。
A.$-\frac{{\sqrt{3}}}{2}$B.$\frac{1}{2}$C.$-\frac{1}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.若$\frac{1+2i}{z}=i$,則z的虛部為( 。
A.-1B.1C.-2D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.求過三點A(4,1),B(-6,3),C(3,0)的圓的方程,并求這個圓的半徑長和圓心坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.執(zhí)行如圖所示的偽代碼,輸出的結(jié)果是25.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=$\frac{a}{x}$+lnx.
(Ⅰ)若函數(shù)f(x)在區(qū)間[1,e]上的最小值是$\frac{3}{2}$,求a的值;
(Ⅱ)當(dāng)a=1時,設(shè)F(x)=f(x)+1+$\frac{lnx}{x}$,求證:當(dāng)x>1時,$\frac{F(x)}{{2{e^{x-1}}}}$>$\frac{e+1}{{x{e^x}+1}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.若曲線$\frac{x^2}{1-k}+\frac{y^2}{1+k}=1$表示橢圓,則k的取值范圍是(  )
A.k>1B.k<-1C.-1<k<1D.-1<k<0或0<k<1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.某設(shè)備的使用年限x與所支出的總費用y(萬元)有如下的統(tǒng)計資料:
使用年限x1234
總費用y1.5233.5
由表中數(shù)據(jù)最小二乘法得線性回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$,其中$\stackrel{∧}$=0.7,由此預(yù)測,當(dāng)使用10年時,所支出的總費用約為5.5萬元.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知數(shù)列{an}的首項a1=1,a2=3,前n項和為Sn,且$\frac{{{S_{n+1}}-{S_n}}}{{{S_n}-{S_{n-1}}}}=\frac{{2{a_n}+1}}{a_n}(n≥2,n∈{N^*})$,設(shè)b1=1,bn+1=log2(an+1)+bn(n∈N*
(1)求數(shù)列{an},{bn}的通項公式
(2)設(shè)cn=$\frac{{{4^{\frac{{{b_{n+1}}-1}}{n+1}}}}}{{{a_n}{a_{n+1}}}}$,求數(shù)列{cn}的前n項和Gn;
(3)求證$\frac{2}{3}≤{G_n}$<1.

查看答案和解析>>

同步練習(xí)冊答案