8.已知集合A={-1,0},B={0,2},則A∪B={-1,0,2}.

分析 根據(jù)兩集合并集的感念進(jìn)行求解即可.

解答 解:集合A={-1,0},B={0,2},則A∪B={-1,0,2}
故答案為:{-1,0,2}

點(diǎn)評 本題主要考查兩集合的并集的感念,注意有重復(fù)的元素要當(dāng)做一個處理.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知冪函數(shù)f(x)=xα(α為常數(shù))的圖象過點(diǎn)$P({2,\frac{1}{2}})$,則f(x)的單調(diào)遞減區(qū)間是( 。
A.(-∞,0)B.(-∞,+∞)C.(-∞,0)∪(0,+∞)D.(-∞,0)與(0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知動點(diǎn)P到點(diǎn)A(-2,0)與點(diǎn)B(2,0)的斜率之積為$-\frac{1}{4}$,點(diǎn)P的軌跡為曲線C.
(Ⅰ)求曲線C的軌跡方程;
(Ⅱ)過點(diǎn)D(1,0)作直線l與曲線C交于P,Q兩點(diǎn),連接PB,QB分別與直線x=3交于M,N兩點(diǎn).若△BPQ和△BMN的面積相等,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知數(shù)列{an}滿足首項(xiàng)a1=2,an=2an-1+2n(n≥2).
(Ⅰ)證明:{$\frac{{a}_{n}}{{2}^{n}}$}為等差數(shù)列并求{an}的通項(xiàng)公式;
(Ⅱ)數(shù)列{bn}滿足bn=log${\;}_{\sqrt{2}}$$\frac{{a}_{n}}{n}$,記數(shù)列{$\frac{1}{_{n}•_{n+1}}$}的前n項(xiàng)和為Tn,設(shè)角B是△ABC的內(nèi)角,若sinBcosB>Tn,對于任意n∈N+恒成立,求角B的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.在等比數(shù)列{an}中,a1=3,a1+a2+a3=9,則a4+a5+a6等于( 。
A.9B.72C.9或72D.9或-72

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.計算($\frac{8}{125}$)${\;}^{-\frac{2}{3}}$-lg$\sqrt{2}$-lg$\sqrt{5}$的結(jié)果為$\frac{23}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.拋物線y2=4x上橫坐標(biāo)為3的點(diǎn)P到焦點(diǎn)F的距離為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.將正弦曲線y=sinx上所有的點(diǎn)向右平移$\frac{2}{3}$π個單位長度,再將圖象上所有點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼?\frac{1}{3}$倍(縱坐標(biāo)不變),則所得到的圖象的函數(shù)解析式y(tǒng)=$sin(3x-\frac{2π}{3})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.下列函數(shù)中,具有性質(zhì)“對任意的x>0,y>0,函數(shù)f(x)滿足f(xy)=f(x)+f(y)”的函數(shù)是( 。
A.冪函數(shù)B.對數(shù)函數(shù)C.指數(shù)函數(shù)D.余弦函數(shù)

查看答案和解析>>

同步練習(xí)冊答案