【題目】在直角坐標(biāo)系xOy中,直線l過(guò)點(diǎn)M(3,4),其傾斜角為45°,圓C的參數(shù)方程為 .再以原點(diǎn)為極點(diǎn),以x正半軸為極軸建立極坐標(biāo)系,并使得它與直角坐標(biāo)系xoy有相同的長(zhǎng)度單位.
(1)求圓C的極坐標(biāo)方程;
(2)設(shè)圓C與直線l交于點(diǎn)A、B,求|MA||MB|的值.
【答案】
(1)解:消去參數(shù)可得圓的直角坐標(biāo)方程式為x2+(y﹣2)2=4,
由極坐標(biāo)與直角坐標(biāo)互化公式得(ρcosθ)2+(ρsinθ﹣2)2=4化簡(jiǎn)得ρ=4sinθ
(2)解:直線l的參數(shù)方程 ,(t為參數(shù)).
即 代入圓方程得: +9=0,
設(shè)A、B對(duì)應(yīng)的參數(shù)分別為t1、t2,則 ,t1t2=9,
于是|MA||MB|=|t1||t2|=|t1t2|=9
【解析】(1)利用cos2θ+sin2θ=1消去參數(shù)可得圓的直角坐標(biāo)方程式,由極坐標(biāo)與直角坐標(biāo)互化公式代入化簡(jiǎn)即可得出.(2)直線l的參數(shù)方程 ,(t為參數(shù)),代入圓方程得: +9=0,利用|MA||MB|=|t1||t2|=|t1t2|即可得出.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為弘揚(yáng)民族古典文化,市電視臺(tái)舉行古詩(shī)詞知識(shí)競(jìng)賽,某輪比賽由節(jié)目主持人隨機(jī)從題庫(kù)中抽取題目讓選手搶答,回答正確將給該選手記正10分,否則記負(fù)10分.根據(jù)以往統(tǒng)計(jì),某參賽選手能答對(duì)每一個(gè)問(wèn)題的概率均為 ;現(xiàn)記“該選手在回答完n個(gè)問(wèn)題后的總得分為Sn”.
(1)求S6=20且Si≥0(i=1,2,3)的概率;
(2)記X=|S5|,求X的分布列,并計(jì)算數(shù)學(xué)期望E(X).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】正方體 中, 的中點(diǎn)為 , 的中點(diǎn)為 ,則異面直線 與 所成的角是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) ,其中 ,若對(duì)任意的非零實(shí)數(shù) ,存在唯一的非零實(shí)數(shù) ,使得 成立, . (并且寫(xiě)出 的取值范圍)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD為梯形,AD∥BC,AB=BC=CD=1,DA=2,DP⊥平面ABP,O,M分別是AD,PB的中點(diǎn).
(Ⅰ)求證:PD∥平面OCM;
(Ⅱ)若AP與平面PBD所成的角為60°,求線段PB的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,已知點(diǎn)A的極坐標(biāo)為( , ),直線l的極坐標(biāo)方程為ρcos(θ﹣ )=a,且點(diǎn)A在直線l上,
(1)求a的值及直線l的直角坐標(biāo)方程;
(2)圓C的參數(shù)方程為 (α為參數(shù)),試判斷直線l與圓C的位置關(guān)系.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,動(dòng)物園要建造一面靠墻的兩間相同的矩形熊貓居室,如果可供建造圍墻的材料總長(zhǎng)是 .
(1)用寬 (單位 )表示所建造的每間熊貓居室的面積 (單位 );
(2)怎么設(shè)計(jì)才能使所建造的每間熊貓居室面積最大?并求出每間熊貓居室的最大面積?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】比較下列各組數(shù)中兩個(gè)數(shù)的大小.
(1) 與;
(2)3與3.1;
(3) 與;
(4)0.20.6與0.30.4.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知以點(diǎn)A(-1,2)為圓心的圓與直線l1:x+2y+7=0相切.過(guò)點(diǎn)B(-2,0)的動(dòng)直線l與圓A相交于M,N兩點(diǎn),Q是MN的中點(diǎn).
(1)求圓A的方程;
(2)當(dāng)|MN|=2時(shí),求直線l的方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com