【題目】如圖,直三棱柱中,,,,外接球的球心為О,點E是側(cè)棱上的一個動點.有下列判斷:

①直線AC與直線是異面直線;

一定不垂直;

③三棱錐的體積為定值;

的最小值為

⑤平面與平面所成角為

其中正確的序號為_______

【答案】①③④⑤

【解析】

由異面直線的概念判斷①;利用線面垂直的判定與性質(zhì)判斷②;找出球心,由棱錐底面積與高為定值判斷③;設(shè),列出關(guān)于的函數(shù)關(guān)系式,結(jié)合其幾何意義,求出最小值判斷④;由面面成角的定義判斷⑤

對于①,因為直線經(jīng)過平面內(nèi)的點,而直線在平面內(nèi),且不過點,所以直線與直線是異面直線,故①正確;

對于②,當(dāng)點所在的位置滿足,,,平面,所以平面,平面,所以,故②錯誤;

對于③,由題意知,直三棱柱的外接球的球心的交點,的面積為定值,平面,所以點到平面的距離為定值,所以三棱錐的體積為定值,故③正確;

對于④,設(shè),,所以,由其幾何意義,即直角坐標(biāo)平面內(nèi)動點與兩定點,距離和的最小值知,其最小值為,故④正確;

對于⑤,由直棱柱可知,,,即為平面與平面所成角,因為,,所以,故⑤正確;

綜上,正確的有①③④⑤,

故答案為:①③④⑤

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線,,則下列結(jié)論正確的是( )

A. 上所有的點向右平移個單位長度,再把所有圖象上各點的橫坐標(biāo)縮短到原來的倍(縱坐標(biāo)不變),得到曲線

B. 上所有點向左平移個單位長度,再把所得圖象上各點的橫坐標(biāo)伸長到原來的3倍(縱坐標(biāo)不變),得到曲線

C. 上各點的橫坐標(biāo)縮短到原來的倍(縱坐標(biāo)不變),再把所得圖象上所有的點向左平移個單位長度,得到曲線

D. 上各點的橫坐標(biāo)伸長到原來的3倍(縱坐標(biāo)不變),再把所得圖象上所有的點向左平移個單位長度,得到曲線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】平面直角坐標(biāo)系中,橢圓C的離心率是,拋物線E的焦點FC的一個頂點.

)求橢圓C的方程;

)設(shè)PE上的動點,且位于第一象限,E在點P處的切線C交與不同的兩點A,B,線段AB的中點為D,直線OD與過P且垂直于x軸的直線交于點M

i)求證:點M在定直線上;

ii)直線y軸交于點G,記的面積為,的面積為,求的最大值及取得最大值時點P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合,對于的一個子集,若存在不大于的正整數(shù),使得對中的任意一對元素、,都有,則稱具有性質(zhì).

1)當(dāng)時,試判斷集合是否具有性質(zhì)?并說明理由;

2)當(dāng)時,若集合具有性質(zhì).

①那么集合是否一定具有性質(zhì)?并說明理由;

②求集合中元素個數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)是連續(xù)的偶函數(shù),且時, 是單調(diào)函數(shù),則滿足的所有之積為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法:①越小,XY有關(guān)聯(lián)的可信度越小;②若兩個隨機變量的線性相關(guān)性越強,則相關(guān)系數(shù)r的值越接近于1;“若,則類比推出,“若,則;④命題“有些有理數(shù)是無限循環(huán)小數(shù),整數(shù)是有理數(shù),所以整數(shù)是無限循環(huán)小數(shù)”是假命題,推理錯誤的原因是使用了“三段論”,推理形式錯誤.其中說法正確的有( )個

A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)a為實數(shù),函數(shù)

1)若,求不等式的解集;

2)是否存在實數(shù)a,使得函數(shù)在區(qū)間上既有最大值又有最小值?若存在,求出實數(shù)a的取值范圍;若不存在,請說明理由;

3)寫出函數(shù)R上的零點個數(shù)(不必寫出過程).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù), ,在處的切線方程為.

(1)求, ;

(2)若,證明: .

【答案】(1), ;(2)見解析

【解析】試題分析:1)求出函數(shù)的導(dǎo)數(shù),得到關(guān)于 的方程組,解出即可;

(2)由(1)可知,

,可得,令, 利用導(dǎo)數(shù)研究其單調(diào)性可得

,

從而證明.

試題解析:((1)由題意,所以

,所以,

,則,與矛盾,故 .

(2)由(1)可知, ,

,可得,

,

當(dāng)時, 單調(diào)遞減,且;

當(dāng)時, , 單調(diào)遞增;且,

所以上當(dāng)單調(diào)遞減,在上單調(diào)遞增,且,

,

.

【點睛本題考查利用函數(shù)的切線求參數(shù)的方法,以及利用導(dǎo)數(shù)證明不等式的方法,解題時要認真審題,注意導(dǎo)數(shù)性質(zhì)的合理運用.

型】解答
結(jié)束】
22

【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為 為參數(shù)),以坐標(biāo)原點為極點, 軸正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為,若直線與曲線相切;

(1)求曲線的極坐標(biāo)方程;

(2)在曲線上取兩點 與原點構(gòu)成,且滿足,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線方程為.

1)證明:直線恒過定點;

2為何值時,點到直線的距離最大,最大值為多少?

3)若直線分別與軸,軸的負半軸交于兩點,求面積的最小值及此時直線的方程.

查看答案和解析>>

同步練習(xí)冊答案