9.已知f(x)=x3-3x+3+m(m>0).在區(qū)間[0,2]上存在三個(gè)不同的實(shí)數(shù)a,b,c,使得以f(a),f(b),f(c)為邊長(zhǎng)的三角形是直角三角形.則m的取值范圍是( 。
A.$(3+4\sqrt{2},+∞)$B.$(2\sqrt{2}-1,+∞)$C.$(0,2\sqrt{2}-1)$D.$(0,3+4\sqrt{2})$

分析 求導(dǎo)f′(x)=3x2-3,由導(dǎo)數(shù)性質(zhì)得函數(shù)f(x)在區(qū)間(0,1)單調(diào)遞減,在區(qū)間(1,2)單調(diào)遞增,從而f(x)min=f(1)=m+1,f(x)max=f(2)=m+5,f(0)=m+3.由此能求出結(jié)果.

解答 解:f(x)=x3-3x+3+m,求導(dǎo)f′(x)=3x2-3,
由f′(x)=0得到x=1或者x=-1,
又x在[0,2]內(nèi),∴函數(shù)f(x)在區(qū)間(0,1)單調(diào)遞減,在區(qū)間(1,2)單調(diào)遞增,
則f(x)min=f(1)=m+1,f(x)max=f(2)=m+5,f(0)=m+3.
∵在區(qū)間[0,2]上存在三個(gè)不同的實(shí)數(shù)a,b,c,
使得以f(a),f(b),f(c)為邊長(zhǎng)的三角形是構(gòu)成直角三角形,
∴(m+1)2+(m+1)2<(m+5)2,即m2-6m-23<0,解得3-4$\sqrt{2}$<m<3+4$\sqrt{2}$,
又已知m>0,∴0<m<3+4$\sqrt{2}$.
故選:D.

點(diǎn)評(píng) 本題考查實(shí)數(shù)的取值范圍的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意導(dǎo)數(shù)性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.下列各式比較大小正確的是(  )
A.1.72.5>1.73B.0.6-1>0.62C.1.70.3<0.93.1D.0.8-0.1>1.250.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.設(shè)4a=5b=m,且$\frac{1}{a}$+$\frac{2}$=1.
(1)求a,b的值(用m表示);
(2)求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知數(shù)列{an}的首項(xiàng)a1=1,數(shù)列{bn}是公比為16的等比數(shù)列,且${b_n}={2^{a_n}}$.
(1)求數(shù)列{an}的通項(xiàng)公式an及前n項(xiàng)和Sn;
(2)設(shè)${c_n}=\frac{S_n}{n}•{2^{n-1}}$,求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.函數(shù)f(x)=$\frac{1}{3}$ax3+ax2+x+2存在單調(diào)遞減區(qū)間,則a的取值范圍是(-∞,0)∪(1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.已知正四面體ABCD,則直線BC與平面ACD所成角的正弦值為$\frac{\sqrt{6}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知集合A={x|y=$\sqrt{\frac{6}{x+1}-1}$,集合B={x|y=lg(-x2+2x+3)}.求A∩(∁RB).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.中心在坐標(biāo)原點(diǎn),對(duì)稱軸為坐標(biāo)軸的雙曲線C過(guò)點(diǎn)$P(3,\sqrt{5})$,離心率為$\sqrt{2}$.
(1)求雙曲線C的方程;
(2)過(guò)C的左頂點(diǎn)A引C的一條漸近線的平行線l,求直線l與另一條漸近線及x軸圍成的三角形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.給定有窮單調(diào)遞增數(shù)列{xn}(n∈N*),數(shù)列{xn}至少有兩項(xiàng),且xi≠0(1≤i≤n),定義集合A={(x,y)|1≤i,j≤n,且i,j∈N*}.若對(duì)任意點(diǎn)A1∈A,存在A2∈A使得OA1⊥OA2(O為坐標(biāo)原點(diǎn)),則稱數(shù)列{xn}具有性質(zhì)P.
(1)給出下列四個(gè)命題,其中正確是①③④(填上所有正確命題的序號(hào))
①數(shù)列{xn}:-2,2具有性質(zhì)P;
②數(shù)列{xn}:-2,-1,1,2具有性質(zhì)P;
③數(shù)列{xn}具有性質(zhì)P,則{xn}中一定存在兩項(xiàng)xi,xj,使得xi+xj=0;
④數(shù)列{xn}具有性質(zhì)P,x1=-1,x2>0,且xn>1(n≥3),則x2=1.
(2)若數(shù)列{xn}只有2015項(xiàng)且具有性質(zhì)P,x1=-1,x3=2,則{xn}的所有S2015=22016-2.

查看答案和解析>>

同步練習(xí)冊(cè)答案