【題目】已知圓C:x2+y2+x-6y+m=0與直線l:x+2y-3=0.
(1)若直線l與圓C沒有公共點,求m的取值范圍;
(2)若直線l與圓C相交于P、Q兩點,O為原點,且OP⊥OQ,求實數(shù)m的值.
【答案】(1)(2)m=3
【解析】
(1)將圓的方程配方,
得2+(y-3)2=,
故有>0,解得m<.
將直線l的方程與圓C的方程組成方程組,得
消去y,得x2+2+x-6×+m=0,
整理,得5x2+10x+4m-27=0, ①
∵直線l與圓C沒有公共點,∴方程①無解,故有Δ=102-4×5(4m-27)<0,解得m>8.∴m的取值范圍是.
(2)設P(x1,y1),Q(x2,y2),
由OP⊥OQ,得=0,即x1x2+y1y2=0, ②
由①及根與系數(shù)的關系,得
x1+x2=-2,x1·x2=, ③
又∵P、Q在直線x+2y-3=0上,
∴y1·y2=·=[9-3(x1+x2)+x1·x2],
將③代入上式,得y1·y2=, ④
將③④代入②得x1·x2+y1·y2=+=0,解得m=3.
代入方程①檢驗得Δ>0成立,∴m=3.
科目:高中數(shù)學 來源: 題型:
【題目】定義在上的偶函數(shù)滿足,當時,,設函數(shù),則與的圖象所有交點的橫坐標之和為( ).
A. 3B. 4C. 5D. 6
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某地擬在一個U形水面PABQ(∠A=∠B=90°)上修一條堤壩(E在AP上,N在BQ上),圍出一個封閉區(qū)域EABN,用以種植水生植物.為了美觀起見,決定從AB上點M處分別向點E,N拉2條分隔線ME,MN,將所圍區(qū)域分成3個部分(如圖),每部分種植不同的水生植物.已知AB=a,EM=BM,∠MEN=90°,設所拉分隔線總長度為l.
(1)設∠AME=2θ,求用θ表示的l函數(shù)表達式,并寫出定義域;
(2)求l的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列函數(shù)中,滿足“f(x+y)=f(x)f(y)”的單調遞增函數(shù)是( )
A.f(x)=
B.f(x)=x3
C.f(x)=( )x
D.f(x)=3x
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,某飛行器在4千米高空飛行,從距著陸點A的水平距離10千米處開始下降,已知下降飛行軌跡為某三次函數(shù)圖象的一部分,則該函數(shù)的解析式為( )
A.y= ﹣ x
B.y= x3﹣ x
C.y= x3﹣x
D.y=﹣ x3+ x
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】當x∈[﹣2,1]時,不等式ax3﹣x2+4x+3≥0恒成立,則實數(shù)a的取值范圍是( )
A.[﹣5,﹣3]
B.[﹣6,﹣ ]
C.[﹣6,﹣2]
D.[﹣4,﹣3]
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com