精英家教網 > 高中數學 > 題目詳情

【題目】已知函數

(1)求函數的單調區(qū)間;

(2)若函數有兩個零點(),求證:

【答案】(1)見解析;(2見解析.

【解析】試題分析:1去絕對值,分為時, ,函數單調遞增;當,根據導數與0的關系得其單調性;2)由(1)知,當時,函數單調遞增,函數至多只有一個零點,不合題意;則必有,此時函數的單調遞減區(qū)間為;單調遞增區(qū)間為,進一步得出,從而得出答案.

試題解析:(1)依題意有,函數的定義域為,當時, , ,函數的單調增區(qū)間為, 時, ,, ,此時函數單調遞增, , ,此時函數單調遞減,綜上所述,當時,函數的單調增區(qū)間為,當時,函數的單調減區(qū)間為,單調增區(qū)間為

(2)由(1)知,當時,函數單調遞增,至多只有一個零點,不合題意;則必有, 此時函數的單調減區(qū)間為,單調增區(qū)間為,由題意,必須,解得, ,得,下面證明: 時,

(),則,所以時遞增,則,所以又因為,所以,綜上所述, .

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=lg(2+x)+lg(2﹣x).

(1)求函數f(x)的定義域并判斷函數f(x)的奇偶性;

(2)記函數g(x)= +3x,求函數g(x)的值域;

(3)若不等式 f(x)m有解,求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知數列的前項和為, , .等 差數列中, ,且公差

求數列的通項公式;

(Ⅱ)是否存在正整數,使得?.若存在,求出的最小值;若 不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數y=f(x)是定義在R上的奇函數,當x≥0時,f(x)=2x﹣x2
(1)求x<0時f(x)的解析式;
(2)問是否存在正數a,b,當x∈[a,b]時,g(x)=f(x),且g(x)的值域為[ ]?若存在,求出所有的a,b的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知中心在原點,焦點在x軸上的橢圓的一個頂點坐標為(0,1),其離心率為
(1)求橢圓的標準方程;
(2)橢圓上一點P滿足∠F1PF2=60°,其中F1 , F2為橢圓的左右焦點,求△F1PF2的面積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數 ,
(1)求函數的定義域;
(2)求 的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】2016年3月9日至15日,谷歌人工智能系統(tǒng)“阿爾法”迎戰(zhàn)圍棋冠軍李世石,最終結果“阿爾法”以總比分4比1戰(zhàn)勝李世石.許多人認為這場比賽是人類的勝利,也有許多人持反對意見,有網友為此進行了調查,在參加調查的2548名男性中有1560名持反對意見,2452名女性中有1200名持反對意見,在運用這些數據說明“性別”對判斷“人機大戰(zhàn)是人類的勝利”是否有關系時,應采用的統(tǒng)計方法是(
A.莖葉圖
B.分層抽樣
C.獨立性檢驗
D.回歸直線方程

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=2x﹣2x , 若對任意的x∈[1,3],不等式f(x2+tx)+f(4﹣x)>0恒成立,則實數t的取值范圍是

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】PM2.5是指懸浮在空氣中的空氣動力學當量直徑小于或等于2.5微米的顆粒物,也稱為可入肺顆粒物,根據現(xiàn)行國家標準GB3095﹣2012,PM2.5日均值在35微克/立方米以下空氣質量為一級;在35微克/立方米~75毫克/立方米之間空氣質量為二級;在75微克/立方米以上空氣質量為超標.從某自然保護區(qū)2012年全年每天的PM2.5監(jiān)測值數據中隨機地抽取10天的數據作為樣本,監(jiān)測值頻數如表所示:

PM2.5日均值
(微克/立方米)

[25,35]

(35,45]

(45,55]

(55,65]

(65,75]

(75,85]

頻數

3

1

1

1

1

3


(1)從這10天的PM2.5日均值監(jiān)測數據中,隨機抽取3天,求恰有1天空氣質量達到一級的概率;
(2)從這10天的數據中任取3天數據,記ξ表示抽到PM2.5監(jiān)測數據超標的天數,求ξ的分布列;
(3)以這10天的PM2.5日均值來估計一年的空氣質量狀況,則一年(按366天算)中平均有多少天的空氣質量達到一級或二級.(精確到整數)

查看答案和解析>>

同步練習冊答案