13.函數(shù)f(x)=mx3+nx在x=$\frac{1}{m}$處有極值,則mn=-3.

分析 求出導函數(shù),令導函數(shù)在x=$\frac{1}{m}$時的值為0,即可求出mn的值.

解答 解:∵f(x)=mx3+nx,∴f′(x)=3mx2+n
∵f(x)=mx3+nx在x=$\frac{1}{m}$處有極值,
∴f′($\frac{1}{m}$)=0
∴$\frac{3}{m}$+n=0
∴mn=-3
故答案為:-3.

點評 解決與函數(shù)的極值有關的問題,常利用極值存在的必要條件:極值點處的導數(shù)值為0.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

3.如圖,圓內(nèi)接四邊形ABCD中,BD是圓的直徑,AB=AC,延長AD與BC的延長線相交于點E,作EF⊥BD于F.
(1)證明:EC=EF;
(2)如果DC=$\frac{1}{2}$BD=3,試求DE的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π),若函數(shù)y=f(x)的圖象與x軸的任意兩個相鄰交點間的距離為π,當x=$\frac{π}{3}$時,函數(shù)y=f(x)取得最大值2.
(1)求函數(shù)f(x)的解析式,并寫出它的單調(diào)增區(qū)間;
(2)若x∈[-$\frac{π}{3}$,$\frac{π}{2}}$],求函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.為了推進身體健康知識宣傳,有關單位舉行了有關知識有獎問答活動,隨機對市民15~65歲的人群抽樣n人,回答問題統(tǒng)計結果如圖表所示:
組號分組回答
正確
的人數(shù)
回答正確
的人數(shù)占本
組的頻率
頻率正確直方圖 
第1組[15,25)50.5 
第2組[25,35)a0.9
第3組[35,45)27x
第4組[45,55)90.36
第5組[55,65)30.2
(1)分別求出n,a,x的值;
(2)請用統(tǒng)計方法估計參與該項知識有獎問答活動的n人的平均年齡(保留一位小數(shù)).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.方程3x+1=2${\;}^{{x}^{2}-1}$的解為1+log23和-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知在四棱錐S-ABCD中,底面ABCD是菱形,且∠BCD=60°,側(cè)面SAB是正三角形,且面SAB⊥面ABCD,F(xiàn)為SD的中點.
(1)證明:SB∥面ACF;
(2)求面SBC與面SAD所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知函數(shù)f(x)=$\frac{1}{3}$x3-$\frac{1}{2}$ax2+2(a∈R)在x=3時取得極小值.
(Ⅰ) 求a的值;
(Ⅱ) 當x∈[-2,4]時,求f(x)的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.設函數(shù)f(x)=$\frac{1}{3}$x3+ax2-8x-1(a<0).若曲線y=f(x)的切線斜率的最小值是-9.求:
(1)a的值;
(2)函數(shù)f(x)的極值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.已知定義在R上的函數(shù)y=f(x)的導函數(shù)為f′(x).若對于任意的x∈R,都有f′(x)>f(x)成立,則滿足不等式f(x)>ex-1f(1)的x的取值范圍是(1,+∞).

查看答案和解析>>

同步練習冊答案