16.已知命題p:x2>x是x>1的充分不必要條件;命題q:若數(shù)列{an}的前n項(xiàng)和Sn=n2,那么數(shù)列{an}是等差數(shù)列.則下列命題是真命題的是(  )
A.p∨(¬q)B.p∨qC.p∧qD.(¬p)∨(¬q)

分析 對(duì)于命題p:x2>x,解得x>1或x<0,即可判斷出真假.命題q:若數(shù)列{an}的前n項(xiàng)和Sn=n2,則n=1時(shí),a1=1;n≥2時(shí),an=Sn-Sn-1,解出即可判斷出真假.再利用復(fù)合命題真假的判定方法即可判斷出結(jié)論.

解答 解:對(duì)于命題p:x2>x,解得x>1或x<0,因此x2>x是x>1的必要不充分條件,因此是假命題.
命題q:若數(shù)列{an}的前n項(xiàng)和Sn=n2,則n=1時(shí),a1=1;n≥2時(shí),an=Sn-Sn-1=n2-(n-1)2=2n-1,當(dāng)n=1時(shí)也成立.∴an=2n-1,因此數(shù)列{an}是等差數(shù)列,首項(xiàng)為1,公差為2,因此是真命題.
∴只有P∨q是真命題.
故選:B.

點(diǎn)評(píng) 本題考查了簡易邏輯的應(yīng)用、不等式解法、等差數(shù)列的充要條件,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知關(guān)于x的不等式組$\left\{\begin{array}{l}{4(x-1)+2>3x}\\{x-1<\frac{6x+a}{7}}\end{array}\right.$,有且只有三個(gè)整數(shù)解,則a的取值范圍是( 。
A.-2≤a≤-1B.-2≤a<-1C.-2<a≤-1D.-2<a<-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知α∈(0,π),tan($α-\frac{π}{4}$)=$\frac{1}{3}$,則sin($\frac{π}{4}+α$)=$\frac{3\sqrt{10}}{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.?dāng)?shù)列的前4項(xiàng)為1,-$\frac{1}{2}$,$\frac{1}{3}$,-$\frac{1}{4}$,則此數(shù)列的通項(xiàng)公式可以是( 。
A.(-1)n$\frac{1}{n}$B.(-1)n+1$\frac{1}{n}$C.(-1)n$\frac{1}{n+1}$D.(-1)n+1$\frac{1}{n-1}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知a,b,c∈R,且a>b>c,則下列不等式一定成立的是( 。
A.$\frac{1}{a}$>$\frac{1}$B.2a-b<1C.$\frac{a}{{c}^{2}+1}$>$\frac{{c}^{2}+1}$D.lg(a-b)>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.某航運(yùn)公司有6艘可運(yùn)載30噸貨物的A型貨船與5艘可運(yùn)載50噸貨物的B型貨船,現(xiàn)有每天至少運(yùn)載900噸貨物的任務(wù),已知每艘貨船每天往返的次數(shù)為A型貨船4次和B型貨船3次,每艘貨船每天往返的成本費(fèi)為A型貨船160元,B型貨船252元,那么,每天派出A型貨船和B型貨船各多少艘,公司所花的成本費(fèi)最低?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.執(zhí)行如圖所示的程序框圖,則輸出s的值為( 。
A.21B.55C.91D.140

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知函數(shù)$f(x)=\sqrt{3}cos(2x-\frac{π}{3})(x∈R)$,下列結(jié)論錯(cuò)誤的是( 。
A.函數(shù)f(x)的最小正周期為πB.函數(shù)f(x)圖象關(guān)于點(diǎn)$(\frac{5π}{12},0)$對(duì)稱
C.函數(shù)f(x)在區(qū)間$[0,\frac{π}{2}]$上是減函數(shù)D.函數(shù)f(x)的圖象關(guān)于直線$x=\frac{π}{6}$對(duì)稱

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知矩形ABCD中,AB=2,AD=1,M為CD的中點(diǎn).如圖將△ADM沿AM折起,使得平面ADM⊥平面ABCM.
(Ⅰ)求證:BM⊥平面ADM;
(Ⅱ)若點(diǎn)E是線段DB上的中點(diǎn),求三棱錐E-ABM的體積V1與四棱錐D-ABCM的體積V2之比.

查看答案和解析>>

同步練習(xí)冊(cè)答案