2.△ABC中,A=45°,$\frac{a}$=$\sqrt{2}$,則B=30°.

分析 由題意和正弦定理可得sinB,由大邊對大角可得.

解答 解:∵△ABC中,A=45°,$\frac{a}$=$\sqrt{2}$,
∴由正弦定理可得sinB=$\frac{bsinA}{a}$=$\frac{\sqrt{2}}{2}×\frac{\sqrt{2}}{2}$=$\frac{1}{2}$,
∴B=30°或B=150°,
又$\frac{a}$=$\sqrt{2}$可得a>b,故A>B,
∴B=30°,
故答案為:30°.

點評 本題考查正弦定理,涉及三角形的邊角關(guān)系,屬基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知奇函數(shù)f(x)的定義域為實數(shù)集R,且f(x)在(-∞,+∞)上是增函數(shù),是否存在這樣的實數(shù)m,使f(4m-2mcosθ)-f(4-2cos2θ)>f(0)對所有的θ∈[0,$\frac{π}{2}$]均成立?若存在,求出適合條件的實數(shù)m的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.在四面體ABCD中,AB=CD=6,AC=BD=4,AD=BC=5,則四面體ABCD的外接球的表面積為$\frac{77π}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知0<α<$\frac{π}{2}$,0<β<$\frac{π}{2}$,且,$\frac{sinβ}{sinα}$=cos(α+β),α+β≠$\frac{π}{2}$,則tanβ的最大值為$\frac{\sqrt{2}}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.化簡cos40°sin70°-sin40°sin20°=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.-268°是第( 。┫笙薜慕牵
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知雙曲線my2-x2=1(m∈R)與拋物線y=$\frac{1}{8}$x2有相同的焦點,則該雙曲線的漸近線方程為y=±$\sqrt{3}$x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.從邊長為10cm×16cm的矩形紙板的四角截去四個相同的小正方形,做成一個無蓋的盒子,則盒子容積的最大值為( 。
A.160 cm3B.144cm3C.72cm3D.12 cm3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知△ABC中,角A、B、C的對邊分別是a、b、c,a=2,函數(shù)f(x)=$\frac{1}{4}{x^3}-\frac{3}{4}$x的極大值是cosA.
(1)求A;  
(2)若S△ABC=$\sqrt{3}$,求b,c.

查看答案和解析>>

同步練習(xí)冊答案