20.曲線$y=lnx-\frac{2}{x}$在x=1處的切線的傾斜角為α,則cosα+sinα的值為( 。
A.$\frac{{2\sqrt{10}}}{5}$B.$\frac{{\sqrt{10}}}{10}$C.$\frac{{\sqrt{10}}}{5}$D.$\frac{{3\sqrt{10}}}{10}$

分析 通過函數(shù)的導數(shù)求出切線的斜率,求出切線的傾斜角的正切值,結合同角基本關系式,解方程,即可得到所求和.

解答 解:f(x)=lnx-$\frac{2}{x}$,
∴函數(shù)f′(x)=$\frac{1}{x}$+$\frac{2}{{x}^{2}}$,
∵y=f(x)在x=1處的切線的傾斜角為α,
∴tanα=3,0<α<$\frac{π}{2}$,即sinα=3cosα,
又sin2α+cos2α=1,
解得sinα=$\frac{3}{\sqrt{10}}$,cosα=$\frac{1}{\sqrt{10}}$,
∴cosα+sinα的值為$\frac{4}{\sqrt{10}}$=$\frac{2\sqrt{10}}{5}$.
故選:A.

點評 本題考查導數(shù)的幾何意義,考查切線方程,考查同角的三角函數(shù)的基本關系式,學生的計算能力,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

10.某人從甲地去乙地共走了500m,途經(jīng)一條寬為x m的河流,該人不小心把一件物品丟在途中,若物品掉在河里就找不到,若物品不掉在河里就能找到.已知該物品能被找到的概率為$\frac{24}{25}$,則河寬為(  )
A.80 mB.20 mC.40 mD.50 m

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.甲、乙兩位射擊運動員,在某天訓練中已各射擊10次,每次命中的環(huán)數(shù)如下:
甲    7  8  7  9  5  4  9  10  7  4
乙    9  5  7  8  7  6  8  6   7  7
(Ⅰ)通過計算估計,甲、乙二人的射擊成績誰更穩(wěn);
(Ⅱ)若規(guī)定命中8環(huán)及以上環(huán)數(shù)為優(yōu)秀,以頻率作為概率,請依據(jù)上述數(shù)據(jù)估計,求甲在第11至
第13次射擊中獲得獲得優(yōu)秀的次數(shù)ξ的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.設向量$\overrightarrow{m}$=(2x-1,3),向量$\overrightarrow{n}$=(1,-1),若$\overrightarrow{m}$⊥$\overrightarrow{n}$,則實數(shù)x的值為( 。
A.-1B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.${({x^3}+\frac{1}{{\sqrt{x}}})^n}$的展開式的所有二項式系數(shù)之和為128,則n為( 。
A.5B.6C.7D.8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.若函數(shù)$f(x)=\frac{x}{2}+ln\sqrt{x}$在某區(qū)間[a,b]上的值域為[ta,tb],則t的取值范圍($\frac{1}{2}$,$\frac{1+e}{2e}$).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知f(x)=|2x-1|+|5x-1|
(1)求f(x)>x+1的解集;
(2)若m=2-n,對?m,n∈(0,+∞),恒有$\frac{1}{m}+\frac{4}{n}≥f(x)$成立,求實數(shù)x的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.解關于x的不等式:
①x2-5x-6<0                       
②$\frac{x-1}{x+2}$≤0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.設數(shù)列{an}是集合{x|x=3s+3t,s<t且s,t∈N}中所有的數(shù)從小到大排列成的數(shù)列,即a1=4,a2=10,a3=12,a4=28,a5=30,a6=36,…,將數(shù)列{an}中各項按照上小下大,左小右大的原則排成如圖的等腰直角三角形數(shù)表,則a15的值為324.

查看答案和解析>>

同步練習冊答案