【題目】某企業(yè)三月中旬生產(chǎn),三種產(chǎn)品共3000件,根據(jù)分層隨機(jī)抽樣的結(jié)果,企業(yè)統(tǒng)計(jì)員制作了如下的統(tǒng)計(jì)表格:

產(chǎn)品類別

產(chǎn)品數(shù)量

1300

樣本中的數(shù)量

130

由于不小心,表格中,產(chǎn)品的有關(guān)數(shù)據(jù)已被污染得看不清楚,統(tǒng)計(jì)員只記得樣本中產(chǎn)品的數(shù)量比樣本中產(chǎn)品的數(shù)量多10.根據(jù)以上信息,求該企業(yè)生產(chǎn)產(chǎn)品的數(shù)量.

【答案】800.

【解析】

根據(jù)每個個體被抽到的頻率相等,先求出總體的樣本容量,據(jù)B產(chǎn)品的樣本數(shù)得到A、C產(chǎn)品的樣本數(shù),再根據(jù)A產(chǎn)品的樣本容量比C產(chǎn)品的樣本容量多10,可得C產(chǎn)品的樣本容量,用C產(chǎn)品的樣本容量除以每個個體被抽到的頻率,可得C產(chǎn)品的數(shù)量.

設(shè)樣本量為

,

,

在樣本中產(chǎn)品和產(chǎn)品共有(件).

設(shè)樣本中產(chǎn)品數(shù)量為,則

,

該企業(yè)生產(chǎn)產(chǎn)品的數(shù)量為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為美化城市環(huán)境,相關(guān)部門需對一半圓形中心廣場進(jìn)行改造出新,為保障市民安全,施工隊(duì)對廣場進(jìn)行圍擋施工如圖,圍擋經(jīng)過直徑的兩端點(diǎn)A,B及圓周上兩點(diǎn)C,D圍成一個多邊形ABPQR,其中AR,RQ,QP,PB分別與半圓相切于點(diǎn)A,D,C,B.已知該半圓半徑OA30米,∠COD60°,設(shè)∠BOC

(1)求圍擋內(nèi)部四邊形OCQD的面積;

(2)為減少對市民出行的影響,圍擋部分面積要盡可能小求該圍擋內(nèi)部多邊形ABPQR面積的最小值?并寫出此時的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= (a∈R).

(Ⅰ)求f(x)在區(qū)間[-1,2]上的最值;

(Ⅱ)若過點(diǎn)P(1,4)可作曲線y=f(x)的3條切線,求實(shí)數(shù)a的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中表示不超過的最大整數(shù),下列關(guān)于說法正確的有:______

的值域?yàn)閇-1,1]

為奇函數(shù)

為周期函數(shù),且最小正周期T=4

在[0,2)上為單調(diào)增函數(shù)

的圖像有且僅有兩個公共點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx=1-a0a≠1)是定義在(-∞,+∞)上的奇函數(shù).

1)求a的值;

2)證明:函數(shù)fx)在定義域(-∞,+∞)內(nèi)是增函數(shù);

3)當(dāng)x∈(0,1]時,tfx≥2x-2恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知為坐標(biāo)原點(diǎn),拋物線,點(diǎn),設(shè)直線交于不同的兩點(diǎn)、.

(1)若直線軸,求直線的斜率的取值范圍;

(2)若直線不垂直于軸,且,證明:直線過定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線被圓截得的弦長為.

(1)的值;

(2)求過點(diǎn)并與圓C相切的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】用紅、黃、藍(lán)三種不同的顏色給大小相同的三個圓隨機(jī)涂色,每個圓只涂一種顏色.設(shè)事件三個圓的顏色全不相同,事件三個圓的顏色不全相同,事件其中兩個圓的顏色相同,事件三個圓的顏色全相同”.

1)寫出試驗(yàn)的樣本空間.

2)用集合的形式表示事件.

3)事件與事件有什么關(guān)系?事件的交事件與事件有什么關(guān)系?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的圖象關(guān)于原點(diǎn)對稱,其中為常數(shù).

1)求的值;

2)當(dāng)時, 恒成立,求實(shí)數(shù)的取值范圍;

3若關(guān)于的方程上有解,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案