不等式
(x-1)2(x+2)
(x-3)(x-4)
≤0的解集是
 
考點:其他不等式的解法
專題:不等式的解法及應用
分析:根據(jù)分式不等式的解法即可得到結論.
解答: 解:若x=1,不等式成立,
若x≠1,則不等式等價為
x+2
(x-3)(x-4)
≤0
,
x+2≥0
(x-3)(x-4)<0
x+2≤0
(x-3)(x-4)>0
,
x≥-2
3<x<4
x≤-2
x>4或x<3
,
則3<x<4或x≤-2,
綜上不等式的解為3<x<4或x≤-2或x=1,
故答案為:{x|3<x<4或x≤-2或x=1}.
點評:本題主要考查不等式的求解,根據(jù)分式不等式的解法是解決本題的關鍵.注意要進行分類討論.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
3
sin(π-ωx)-sin(
π
2
-ωx)(ω>0)的圖象與x軸相鄰兩交點的距離為π.
(1)求ω的值;
(2)在△ABC中,a,b,c分別是角A,B,C的對邊,且f(A)=2,求
b-c
a
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設a,b為實數(shù),命題甲:ab>b2,命題乙:a<b<0,則命題甲是命題乙的(  )
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知定義在R上的奇函數(shù)f(x)滿足f(x-4)=-f(x).
(1)當f(1)=3時,求f(2015)的值;
(2)求證:函數(shù)f(x)的圖象關于直線x=2對稱;
(3)若f(x)滿足在區(qū)間[0,2]上是增函數(shù)的條件,且f(2)=1,求函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點(
3
3
,3
3
)在冪函數(shù)f(x)的圖象上,則f(x)的定義域為
 
,奇偶性為
 
,單調減區(qū)間為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線l1:2x-y-5=0;直線l2:x+y-5=0.
(Ⅰ)求點P(3,0)到直線l1的距離;
(Ⅱ)直線m過點P(3,0),與直線l1、直線l2分別交與點M、N,且點P是線段MN的中點,求直線m的一般式方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合A是函數(shù)f(x)=log
1
3
(x-1)
的定義域,集合B是函數(shù)g(x)=2x,x∈[-1,2]的值域,求集合A,B,A∪B.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某校有150名學生參加了中學生環(huán)保知識競賽,為了解成績情況,現(xiàn)從中隨機抽取50名學生的成績進行統(tǒng)計(所有學生成績均不低于60分).請你根據(jù)尚未完成的頻率分布表,解答下列問題:

分組頻數(shù)頻率
第1組[60,70)M0.26
第2組[70,80)15p
第3組[80,90)200.40
第4組[90,100]Nq
合計501
(Ⅰ)寫出M、N、p、q(直接寫出結果即可),并作出頻率分布直方圖;
(Ⅱ)若成績在90分以上的學生獲得一等獎,試估計全校所有參賽學生獲一等獎的人數(shù);
(Ⅲ)現(xiàn)從所有一等獎的學生中隨機選擇2名學生接受采訪,已知一等獎獲得者中只有2名女生,求恰有1名女生接受采訪的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設不等式組
x≥1
x+y≤3
y≥a(x-3)
其中a>0,若z=2x+y的最小值為
1
2
,則a=
 

查看答案和解析>>

同步練習冊答案