20.橢圓$\frac{x^2}{25}+\frac{y^2}{16}=1$的左、右焦點(diǎn)分別為F1,F(xiàn)2,弦AB過F1,若△ABF2的內(nèi)切圓周長為4,A、B兩點(diǎn)的坐標(biāo)分別為(x1,y1)和(x2,y2),則|y2-y1|的值為( 。
A.$\frac{\sqrt{5}}{3}$B.$\frac{10}{3}$C.$\frac{20}{3}$D.$\frac{5}{3}$

分析 求出橢圓的焦點(diǎn)坐標(biāo),結(jié)合橢圓的定義,通過三角形的面積轉(zhuǎn)化求解即可.

解答 解:橢圓:$\frac{x^2}{25}+\frac{y^2}{16}=1$,a=5,b=4,∴c=3,左、右焦點(diǎn)F1(-3,0)、F2( 3,0),
△ABF2的內(nèi)切圓面積為π,則內(nèi)切圓的半徑為r=$\frac{1}{2}$,
而△ABF2的面積=△A F1F2的面積+△BF1F2的面積=$\frac{1}{2}$×|y1|×|F1F2|+$\frac{1}{2}$×|y2|×|F1F2|=$\frac{1}{2}$×(|y1|+|y2|)×|F1F2|=3|y2-y1|(A、B在x軸的上下兩側(cè))
又△ABF2的面積=$\frac{1}{2}$×r(|AB|+|BF2|+|F2A|)=$\frac{1}{2}×\frac{1}{2}$(2a+2a)=a=5.
所以 3|y2-y1|=5,|y2-y1|=$\frac{5}{3}$.
故選:D.

點(diǎn)評 本題考查橢圓的簡單性質(zhì)的應(yīng)用,考查計(jì)算能力以及轉(zhuǎn)化思想的應(yīng)用

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.在三棱錐P-ABC中,PA⊥平面ABC,AB⊥BC,AB=BC=$\sqrt{2}$,PA=2,已知此三棱錐外接球恰為一正方體的內(nèi)切球,則該正方體的體積為16$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若空間中四條兩兩不同的直線l1,l2,l3,l4,滿足l1∥l2,l3⊥l1,l4⊥l2,則下列結(jié)論一定正確的是(  )
A.l3⊥l4B.l3∥l4
C.l3,l4既不平行也不垂直D.l3,l4的位置關(guān)系不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.在直三棱柱ABC-A′B′C′中,AB=AC=2,AA′=3,AB⊥AC,E為棱B′C′的中點(diǎn),F(xiàn)為側(cè)棱CC′上一點(diǎn),若CE⊥AF,則AF與平面ABB′A′所成的角的正切值為( 。
A.3B.$\frac{1}{3}$C.$\frac{2}{3}$D.$\frac{4}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.一個(gè)幾何體的三視圖如圖所示,則該幾何體的表面積是( 。
A.$\frac{{9+\sqrt{3}}}{2}$B.5C.$\frac{{18+\sqrt{3}}}{4}$D.$4+\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.若方程$\frac{{x}^{2}}{9-k}$-$\frac{{y}^{2}}{4-k}$=1表示焦點(diǎn)在x軸上的橢圓,則實(shí)數(shù)k的取值范圍是4<k<$\frac{13}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.某算法的程序框圖如圖所示,其中輸入的變量J在1,2,3,…,30這30個(gè)整數(shù)中等可能隨機(jī)產(chǎn)生.
(1)分別求出(按程序框圖正確編程運(yùn)行時(shí))輸出y的值為i的概率Pi(i=1,2,3);
(2)甲、乙兩同學(xué)依據(jù)自己對程序框圖的理解,各自編寫程序重復(fù)運(yùn)行n次后,統(tǒng)計(jì)記錄
了輸出y的值為i(i=1,2,3)的頻數(shù),下面是甲、乙所作頻數(shù)統(tǒng)計(jì)表的部分?jǐn)?shù)據(jù):
甲的頻數(shù)統(tǒng)計(jì)表(部分)
運(yùn)行次數(shù)輸出y=1的頻數(shù)輸出y=2的頻數(shù)輸出y=3的頻數(shù)
3016113
2000967783250
乙的頻數(shù)統(tǒng)計(jì)表(部分)
運(yùn)行次數(shù)輸出y=1的頻數(shù)輸出y=2的頻數(shù)輸出y=3的頻數(shù)
3013134
2000998803199
當(dāng)n=2000時(shí),根據(jù)表中的數(shù)據(jù),分別寫出甲、乙所編程序各自輸出y的值為i(i=1,2,3)的頻率(用分?jǐn)?shù)表示),并判斷甲、乙中誰所編寫的程序符合算法要求的可能性較大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知△ABC中,AB=7,AC=8,BC=9,P點(diǎn)在平面ABC內(nèi),且$\overrightarrow{PA}$$•\overrightarrow{PC}$+7=0,則|$\overrightarrow{PB}$|的最大值為10.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知橢圓$\frac{x^2}{9}+\frac{y^2}{n^2}=1$與雙曲線$\frac{x^2}{4}-\frac{y^2}{m^2}=1$有相同的焦點(diǎn),則動(dòng)點(diǎn)P(n,m)的軌跡是( 。
A.橢圓的一部分B.雙曲線的一部分C.拋物線的一部分D.圓的一部分

查看答案和解析>>

同步練習(xí)冊答案