(本小題滿分12分)
(1)已知函數f(x)=2x-x2,問方程f(x)=0在區(qū)間[-1,0]內是否有解,為什么?
(2)若方程ax2-x-1=0在(0,1)內恰有一解,求實數a的取值范圍.
(1) 方程f(x)=0在區(qū)間[-1,0]內有解.(2) (2,+∞).
解析試題分析:
(1)因為第一問中,f(-1)=2-1-(-1)2=-<0,
f(0)=20-02=1>0,結合零點存在性定理可知,結論。
(2)方程ax2-x-1=0在(0,1)內恰有一解,即函數f(x)=ax2-x-1在(0,1)內恰有一個零點,則只要滿足端點的函數值一號即可。
(1) 因為f(-1)=2-1-(-1)2=-<0,
f(0)=20-02=1>0,
而函數f(x)=2x-x2的圖象是連續(xù)曲線,所以f(x)在區(qū)間[-1,0]內有零點,即方程f(x)=0在區(qū)間[-1,0]內有解.
(2)∵方程ax2-x-1=0在(0,1)內恰有一解,即函數f(x)=ax2-x-1在(0,1)內恰有一個零點,
∴f(0)·f(1)<0,即-1×(a-2)<0,解得a>2.
故a的取值范圍為(2,+∞).
考點:本題主要是考查函數零點的運用。
點評:解決該試題的關鍵是根據零點的概念將方程解的問題轉換為關于圖像與圖像的交點問題來處理得到結論。
科目:高中數學 來源: 題型:解答題
(本題滿分14分)已知函數的一系列對應值如下表:
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
本題12分)
已知函數.
(1)求的定義域;
(2)在函數的圖象上是否存在不同的兩點,使得過這兩點的直線平行于x軸;
(3)當,b滿足什么條件時,在上恒取正值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知定義在(-∞,—1)∪(1,+∞)上的奇函數滿足:①f(3)=1;②對任意的x>2, 均有f(x)>0,③對任意的x>0,y>0.均有f(x+1)+f(y+1)=f(xy+1)
⑴試求f(2)的值;
⑵證明f(x)在(1,+∞)上單調遞增;
⑶是否存在實數a,使得f(cos2θ+asinθ)<3對任意的θ(0,π)恒成立?若存在,請求出a的范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分12分)已知函數.
(1)若定義域內存在,使不等式成立,求實數的最小值;
(2)若函數在區(qū)間上恰有兩個不同的零點,求實數取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com