11.在等差數(shù)列{an}中,a3+a4=12,公差d=2,則a9=( 。
A.14B.15C.16D.17

分析 運用等差數(shù)列的通項公式,解方程可得首項,再由通項公式計算可得所求值.

解答 解:在等差數(shù)列{an}中,a3+a4=12,公差d=2,
可得2a1+5d=12,
即有2a1=12-5×2=2,
即a1=1,
則a9=a1+8d=1+16=17.
故選:D.

點評 本題考查等差數(shù)列的通項公式的運用,考查方程思想和運算能力,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

1.若$\frac{|sinx|}{sinx}$+$\frac{cosx}{|cosx|}$+$\frac{|tanx|}{tanx}$=-1,則角x一定不是( 。
A.第四象限角B.第三象限角C.第二象限角D.第一象限角

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.曲線g(x)=2cos(x+$\frac{π}{3}$)與直線y=0,x=-$\frac{π}{3}$,x=$\frac{π}{6}$所圍成的平面圖形的面積為2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.已知函數(shù)數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$),在一個周期內(nèi)的圖象如圖所示,若已知函數(shù)數(shù)f(x1)=f(x2),且x1,x2∈[$\frac{π}{12}$,$\frac{5π}{6}$],x1≠x2,則f(x1+x2)=( 。
A.$\sqrt{3}$B.2C.-$\sqrt{3}$D.-2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知函數(shù)$f(x)=sin\frac{x}{3}cos\frac{x}{3}+\sqrt{3}{cos^2}\frac{x}{3}$.
(1)求f(x)的最小正周期和單調(diào)遞增區(qū)間;
(2)當$x∈[0,\frac{π}{2}]$時,求f(x)的最小值及取得最小值時x的集合.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.若{$\frac{{a}_{n}}{n}$+1}是公比為2的等比數(shù)列,且a1=1,則a1+$\frac{{a}_{2}}{2}$+$\frac{{a}_{3}}{3}$+…+$\frac{{a}_{9}}{9}$=1013.(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.若sin($α+\frac{π}{4}$)=$\sqrt{2}$(sinα+2cosα),則sin2α=( 。
A.-$\frac{4}{5}$B.$\frac{4}{5}$C.-$\frac{3}{5}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.由“若數(shù)列{an}為等差數(shù)列,則有$\frac{{a}_{6}+{a}_{7}+…+{a}_{10}}{5}$=$\frac{{a}_{1}+{a}_{2}+…+{a}_{15}}{15}$成立”類比“若數(shù)列{bn}為正項等比數(shù)列,則有$\root{5}{{_{6}b}_{7}••{•b}_{10}}$=$\root{15}{{{_{1}b}_{2}b}_{3}••{•b}_{15}}$成立”.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.已知直線l:$\sqrt{5}$x-3ycosθ-1=0的傾斜角為θ($θ>\frac{π}{2}$),則直線l的斜率為-$\frac{\sqrt{5}}{2}$.

查看答案和解析>>

同步練習冊答案