A. | [-3,$\frac{3}{2}$] | B. | [-$\frac{3}{2}$,$\frac{3}{2}$] | C. | [$\frac{3}{2}$,3] | D. | (-3,-$\frac{3}{2}$] |
分析 利用函數(shù)圖象變換規(guī)律得出f(x)=3sin(2x-$\frac{π}{6}$)+a,轉(zhuǎn)化為g(x)=3sin(2x-$\frac{π}{6}$),x∈[-$\frac{π}{6}$,$\frac{π}{2}$],y=-a,有2個交點問題求解.
解答 解:根據(jù)函數(shù)圖象的變換得出:函數(shù)y=f(x)=3sin(2x-$\frac{π}{6}$)+a,
構(gòu)造函數(shù):g(x)=3sin(2x-$\frac{π}{6}$),x∈[-$\frac{π}{6}$,$\frac{π}{2}$],
y=-a,
∵y=f(x)+a在x∈[-$\frac{π}{6}$,$\frac{π}{2}$]上有兩個不同的零點,
∴g(x)=3sin(2x-$\frac{π}{6}$),x∈[-$\frac{π}{6}$,$\frac{π}{2}$],
y=-a,有2個交點,-$\frac{π}{2}$≤2x$-\frac{π}{6}$≤$\frac{5π}{6}$
∴利用正弦函數(shù)圖象性質(zhì)得出:$-\frac{3}{2}$≤-a<3,
即實數(shù)a的取值范圍是:(-3,$-\frac{3}{2}$]
故選:D
點評 本題主要考查y=Asin(ωx+φ)的圖象變換規(guī)律,數(shù)形結(jié)合解決問題,綜合性較大.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 兩條直線平行,同旁內(nèi)角互補(bǔ),如果∠A和∠B是兩條平行直線的同旁內(nèi)角,則∠A+∠B=180° | |
B. | 由平面三角形的性質(zhì),推測空間四面體性質(zhì) | |
C. | 某校高三共有10個班,1班有51人,2班有53人,3班有52人,由此推測各班都超過50人 | |
D. | 在數(shù)列{an}中,a1=1,an+1=$\frac{{a}_{n}}{1+{a}_{n}}$(n=1,2,3,…),由此歸納出{an}的通項公式 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
所用時間(分鐘) | 10~20 | 20~30 | 30~40 | 40~50 | 50~60 |
選擇L1的人數(shù) | 60 | 120 | 180 | 120 | 120 |
選擇L2的人數(shù) | 0 | 40 | 160 | 160 | 40 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{8}$ | B. | $\frac{5}{16}$ | C. | $\frac{3}{8}$ | D. | $\frac{7}{16}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com