5.下面的幾種推理過程是演繹推理的是( 。
A.兩條直線平行,同旁內(nèi)角互補(bǔ),如果∠A和∠B是兩條平行直線的同旁內(nèi)角,則∠A+∠B=180°
B.由平面三角形的性質(zhì),推測空間四面體性質(zhì)
C.某校高三共有10個(gè)班,1班有51人,2班有53人,3班有52人,由此推測各班都超過50人
D.在數(shù)列{an}中,a1=1,an+1=$\frac{{a}_{n}}{1+{a}_{n}}$(n=1,2,3,…),由此歸納出{an}的通項(xiàng)公式

分析 演繹推理是由普通性的前提推出特殊性結(jié)論的推理.其形式在高中階段主要學(xué)習(xí)了三段論:大前提、小前提、結(jié)論,由此對四個(gè)命題進(jìn)行判斷得出正確選項(xiàng).

解答 解:A選項(xiàng)是演繹推理,大前提是“兩條直線平行,同旁內(nèi)角互補(bǔ),”,小前提是“∠A與∠B是兩條平行直線的同旁內(nèi)角”,結(jié)論是“∠A+∠B=180°”
B選項(xiàng)“由平面三角形的性質(zhì),推測空間四面體性質(zhì)”是類比推理;
C選項(xiàng):某校高二共有10個(gè)班,1班有51人,2班有53人,3班有52人,由此推測各班都超過50人,是歸納推理;
D選項(xiàng)中,在數(shù)列{an}中,a1=1,an+1=$\frac{{a}_{n}}{1+{a}_{n}}$(n=1,2,3,…),由此歸納出{an}的通項(xiàng)公式,是歸納推理.
綜上得,A選項(xiàng)正確
故選A.

點(diǎn)評 本題考點(diǎn)是進(jìn)行簡單的演繹推理,解題的關(guān)鍵是熟練掌握演繹推理的定義及其推理形式,演繹推理是由普通性的前提推出特殊性結(jié)論的推理.演繹推理主要形式有三段論,其結(jié)構(gòu)是大前提、小前提、結(jié)論.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.若展開式(x-1)7,并按x的降次冪排列,則系數(shù)最大的項(xiàng)是(  )
A.第4項(xiàng)和第5項(xiàng)B.第4項(xiàng)C.第5項(xiàng)D.第6項(xiàng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.三段論推理“①矩形是平行四邊形;②正方形是矩形;③正方形是平行四邊形”中的小前提是②.(填寫序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.設(shè)F(0,1),點(diǎn)P在x軸上,點(diǎn)Q在y軸上,$\overrightarrow{QN}$=2$\overrightarrow{QP}$,$\overrightarrow{QP}$⊥$\overrightarrow{PF}$,當(dāng)點(diǎn)P在x軸上運(yùn)動時(shí),點(diǎn)N的軌跡為曲線C.
(1)求曲線C的方程;
(2)過點(diǎn)F的直線l交曲線C于A,B兩點(diǎn),且曲線C在A,B兩點(diǎn)處的切線相交于點(diǎn)M,若△MAB的三邊成等差數(shù)列,求此時(shí)點(diǎn)M到直線AB的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的上頂點(diǎn)M與左、右焦點(diǎn)F1、F2構(gòu)成三角形MF1F2面積為$\sqrt{3}$,又橢圓C的離心率為$\frac{{\sqrt{3}}}{2}$.
(1)求橢圓C的方程;
(2)橢圓C的下頂點(diǎn)為N,過點(diǎn)T(t,2)(t≠0)的直線TM,TN分別與橢圓C交于E,F(xiàn)兩點(diǎn).若△TMN的面積是△TEF的面積的k倍,求k的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)過點(diǎn)P(1,$\frac{3}{2}$),其離心率為$\frac{1}{2}$.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)橢圓C的右頂點(diǎn)為A,直線l交C于兩點(diǎn)M、N(異于點(diǎn)A),若D在MN上,且AD⊥MN,|AD|2=|MD||ND|,證明直線l過定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知橢圓E:$\frac{{x}^{2}}{{a}^{2}}+{y}^{2}$=1(a>1),過點(diǎn)B($\frac{4}{5}$,-$\frac{1}{5}$)作斜率為1的直線l交橢圓E于C、D兩點(diǎn),點(diǎn)B恰為線段CD的中點(diǎn),O為坐標(biāo)原點(diǎn).
(1)求橢圓E的標(biāo)準(zhǔn)方程;
(2)設(shè)動點(diǎn)Q在橢圓E上,點(diǎn)R(-1,0),若直線QR的斜率大于1,求直線OQ的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的兩頂點(diǎn)為A1,A2,虛軸兩端點(diǎn)為B1,B2,兩焦點(diǎn)為F1,F(xiàn)2.若以A1A2為直徑的圓內(nèi)切于菱形F1B1F2B2,則雙曲線的離心率為( 。
A.$\frac{1+\sqrt{5}}{2}$B.$\frac{3+\sqrt{5}}{2}$C.$\frac{1+\sqrt{2}}{2}$D.$\frac{3+\sqrt{2}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.若將函數(shù)y=3sin(6x+$\frac{π}{6}$)的圖象上各點(diǎn)的橫坐標(biāo)伸長到原來的3倍(縱坐標(biāo)不變),再向右平移$\frac{π}{6}$個(gè)單位長度,得到函數(shù)y=f(x)的圖象,若y=f(x)+a在x∈[-$\frac{π}{6}$,$\frac{π}{2}$]上有兩個(gè)不同的零點(diǎn),則實(shí)數(shù)a的取值范圍是(  )
A.[-3,$\frac{3}{2}$]B.[-$\frac{3}{2}$,$\frac{3}{2}$]C.[$\frac{3}{2}$,3]D.(-3,-$\frac{3}{2}$]

查看答案和解析>>

同步練習(xí)冊答案