A. | 兩條直線平行,同旁內(nèi)角互補(bǔ),如果∠A和∠B是兩條平行直線的同旁內(nèi)角,則∠A+∠B=180° | |
B. | 由平面三角形的性質(zhì),推測空間四面體性質(zhì) | |
C. | 某校高三共有10個(gè)班,1班有51人,2班有53人,3班有52人,由此推測各班都超過50人 | |
D. | 在數(shù)列{an}中,a1=1,an+1=$\frac{{a}_{n}}{1+{a}_{n}}$(n=1,2,3,…),由此歸納出{an}的通項(xiàng)公式 |
分析 演繹推理是由普通性的前提推出特殊性結(jié)論的推理.其形式在高中階段主要學(xué)習(xí)了三段論:大前提、小前提、結(jié)論,由此對四個(gè)命題進(jìn)行判斷得出正確選項(xiàng).
解答 解:A選項(xiàng)是演繹推理,大前提是“兩條直線平行,同旁內(nèi)角互補(bǔ),”,小前提是“∠A與∠B是兩條平行直線的同旁內(nèi)角”,結(jié)論是“∠A+∠B=180°”
B選項(xiàng)“由平面三角形的性質(zhì),推測空間四面體性質(zhì)”是類比推理;
C選項(xiàng):某校高二共有10個(gè)班,1班有51人,2班有53人,3班有52人,由此推測各班都超過50人,是歸納推理;
D選項(xiàng)中,在數(shù)列{an}中,a1=1,an+1=$\frac{{a}_{n}}{1+{a}_{n}}$(n=1,2,3,…),由此歸納出{an}的通項(xiàng)公式,是歸納推理.
綜上得,A選項(xiàng)正確
故選A.
點(diǎn)評 本題考點(diǎn)是進(jìn)行簡單的演繹推理,解題的關(guān)鍵是熟練掌握演繹推理的定義及其推理形式,演繹推理是由普通性的前提推出特殊性結(jié)論的推理.演繹推理主要形式有三段論,其結(jié)構(gòu)是大前提、小前提、結(jié)論.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 第4項(xiàng)和第5項(xiàng) | B. | 第4項(xiàng) | C. | 第5項(xiàng) | D. | 第6項(xiàng) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1+\sqrt{5}}{2}$ | B. | $\frac{3+\sqrt{5}}{2}$ | C. | $\frac{1+\sqrt{2}}{2}$ | D. | $\frac{3+\sqrt{2}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-3,$\frac{3}{2}$] | B. | [-$\frac{3}{2}$,$\frac{3}{2}$] | C. | [$\frac{3}{2}$,3] | D. | (-3,-$\frac{3}{2}$] |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com