【題目】設(shè)函數(shù)的定義域?yàn)?/span>,如果存在非零常數(shù),對(duì)于任意,都有,則稱函數(shù)是“似周期函數(shù)”,非零常數(shù)為函數(shù)的“似周期”.現(xiàn)有下面四個(gè)關(guān)于“似周期函數(shù)”的命題:
①如果“似周期函數(shù)”的“似周期”為,那么它是周期為2的周期函數(shù);
②函數(shù)是“似周期函數(shù)”;
③如果函數(shù)是“似周期函數(shù)”,那么“或”.
以上正確結(jié)論的個(gè)數(shù)是( )
A.0B.1C.2D.3
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知為橢圓的左、右焦點(diǎn),離心率為,點(diǎn)在橢圓上.
(1)求橢圓的方程;
(2)過(guò)的直線分別交橢圓于和,且,問(wèn)是否存在常數(shù),使得成等差數(shù)列?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正三棱柱中,.
(1)求直線與平面所成角的正弦值;
(2)在線段上是否存在點(diǎn)?使得二面角的大小為60°,若存在,求出的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知從橢圓的一個(gè)焦點(diǎn)看兩短軸端點(diǎn)所成視角為,且橢圓經(jīng)過(guò).
(1)求橢圓的方程;
(2)是否存在實(shí)數(shù),使直線與橢圓有兩個(gè)不同交點(diǎn),且(為坐標(biāo)原點(diǎn)),若存在,求出的值.不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,四邊形是邊長(zhǎng)為2的菱形,,為的中點(diǎn),以為折痕將折起到的位置,使得平面平面,如圖2.
(1)證明:平面平面;
(2)求點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,底面為菱形,,側(cè)棱底面,,點(diǎn)為的中點(diǎn),作,交于點(diǎn).
(1)求證:平面;
(2)求證:;
(3)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),給出下列四個(gè)結(jié)論:
① 函數(shù)的最小正周期是;
② 函數(shù)在區(qū)間上是減函數(shù);
③ 函數(shù)的圖像關(guān)于點(diǎn)對(duì)稱;
④ 函數(shù)的圖像可由函數(shù)的圖像向右平移個(gè)單位,再向下平移1個(gè)單位得到.其中正確結(jié)論的個(gè)數(shù)是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)各項(xiàng)均為正數(shù)的數(shù)列{an}的前n項(xiàng)和為Sn,滿足:對(duì)任意的n∈N*,都有an+1+Sn+1=1,又a1.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)令bn=log2an,求(n∈N*)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com