9.將函數(shù)y=sinx的圖象向右平移$\frac{π}{6}$個單位,再將所得函數(shù)圖象上所有點的橫坐標伸長到原來的2倍(縱坐標不變),得到函數(shù)y=sin(ωx+φ),(ω>0,|φ|<$\frac{π}{2}$)的圖象,則(  )
A.ω=2,φ=-$\frac{π}{6}$B.ω=2,φ=-$\frac{π}{3}$C.ω=$\frac{1}{2}$,φ=-$\frac{π}{6}$D.ω=$\frac{1}{2}$,φ=-$\frac{π}{3}$

分析 先根據(jù)左加右減的性質(zhì)進行平移,再根據(jù)橫坐標伸長到原來的2倍時w的值變?yōu)樵瓉淼?nbsp;$\frac{1}{2}$倍,得到答案.

解答 解:將函數(shù)y=sinx的圖象向右平移$\frac{π}{6}$個單位,得到函數(shù)y=sin(x-$\frac{π}{6}$),
再把所得圖象上所有點的橫坐標伸長到原來的2倍,得到函數(shù):y=sin($\frac{1}{2}$x-$\frac{π}{6}$).
ω=$\frac{1}{2}$,φ=-$\frac{π}{6}$.
故選:C.

點評 本題主要考查三角函數(shù)的平移變換.屬基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

2.在各項均為正數(shù)的等比數(shù)列{an}中,前n項和為Sn,若S4=11,S8=187,則公比q的值是2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.首項為1,且公比為q(|q|≠1)的等比數(shù)列的第11項等于這個數(shù)列的前n項之積,則n的值為(  )
A.5B.4C.6D.7

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{4}$=1(a∈N*)的兩個焦點為F1,F(xiàn)2,P為該雙曲線上一點,滿足|F1F2|2=|PF1|•|PF2|,P到坐標原點O的距離為d,且5<d<7,則a2=4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.如圖,已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)經(jīng)過點(1,$\frac{3}{2}$),且離心率為$\frac{1}{2}$.
(1)求橢圓C的方程;
(2)若直線l過橢圓C的左焦點F1交橢圓于A,B兩點,AB的中垂線交長軸于點D,試探索$\frac{|D{F}_{1}|}{|AB|}$是否為定值?若是,求出該定值,否則說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.如圖,扇形AOB中,OA=1,∠AOB=90°,M是OB中點,P是弧AB上的動點,N是線段OA上的動點,則$\overrightarrow{PM}$$•\overrightarrow{PN}$的最小值為( 。
A.0B.1C.$\frac{3}{2}$D.1-$\frac{\sqrt{5}}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.下列說法正確的是( 。
A.兩兩相交的三條直線共面
B.兩條異面直線在同一平面上的射影可以是一條直線
C.一條直線上有兩點到平面的距離相等,則這條直線和該平面平行
D.不共面的四點中,任何三點不共線.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.已知$\overrightarrow{a}$,$\overrightarrow$是非零向量,則“|$\overrightarrow{a}$•$\overrightarrow$|=|$\overrightarrow{a}$|•|$\overrightarrow$|”是“$\overrightarrow{a}$∥$\overrightarrow$”成立的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分條件又不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.若復(fù)數(shù)z滿足z(1-i)=|1-i|+i,則z的實部為$\frac{\sqrt{2}-1}{2}$.

查看答案和解析>>

同步練習冊答案