【題目】某班隨機抽查了名學生的數(shù)學成績,分數(shù)制成如圖的莖葉圖,其中組學生每天學習數(shù)學時間不足個小時,組學生每天學習數(shù)學時間達到一個小時,學校規(guī)定分及分以上記為優(yōu)秀,分及分以上記為達標,分以下記為未達標.

1)根據(jù)莖葉圖完成下面的列聯(lián)表:

達標

未達標

總計

總計

2)判斷是否有的把握認為“數(shù)學成績達標與否”與“每天學習數(shù)學時間能否達到一小時”有關.

參考公式與臨界值表:,其中.

【答案】1)詳見解析(2)沒有的把握認為“數(shù)學成績達標與否”與“每天學習數(shù)學時間能否達到一小時”有關.

【解析】

1)根據(jù)莖葉圖中的數(shù)據(jù)可補充列聯(lián)表中的數(shù)據(jù);

2)計算出的觀測值,結合臨界值表可得出結論.

1)列聯(lián)表如下:

達標

未達標

總計

總計

2)由公式,而

所以,沒有的把握認為“數(shù)學成績達標與否”與“每天學習數(shù)學時間能否達到一小時”有關.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】抖音是一款音樂創(chuàng)意短視頻社交軟件,是一個專注年輕人的15s音樂短視頻社區(qū). 用戶可以通過這款軟件選擇歌曲,拍攝15s的音樂短視頻,形成自己的作品. 20186月首批25家央企集體入駐抖音,一調研員在某單位隨機抽取7人進行刷抖音時間的調查,若抽出的7人中有3人是抖音迷,4人為非抖音迷,現(xiàn)從這7人中隨機抽取3人做進一步的詳細登記.

1)用X表示抽取的3人中是抖音迷的員工人數(shù),求隨機變量X的分布列與數(shù)學期望;

2)設A為事件抽取的3人中,既有是抖音迷的員工,也有非抖音迷的員工,求事件A發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù),,.

1)若對任意恒成立,求的取值范圍;

2,討論函數(shù)的單調性.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓 的兩個焦點與短軸的一個端點是直角三角形的三個頂點,直線 與橢圓有且只有一個公共點.

(Ⅰ)求橢圓的方程及點的坐標;

(Ⅱ)設是坐標原點,直線平行于,與橢圓交于不同的兩點、,且與直線交于點,證明:存在常數(shù),使得,并求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某蛇養(yǎng)殖基地因國家實施精準扶貧,大力扶持農業(yè)產業(yè)發(fā)展,擬擴大養(yǎng)殖規(guī)模.現(xiàn)對該養(yǎng)殖基地已經(jīng)售出的王錦蛇的體長(單位:厘米)進行了統(tǒng)計,得到體長的頻數(shù)分布表如下:

體長(厘米)

頻數(shù)

40

50

110

160

120

20

(1)將王錦蛇的體長在各組的頻率視為概率,趙先生欲從此基地隨機購買3條王錦蛇,求至少有2條體長不少于200厘米的概率.

(2)為了拓展銷售市場,該養(yǎng)殖基地決定購買王錦蛇與烏梢蛇兩類成年母蛇用于繁殖幼蛇,這兩類蛇各200條的相關信息如下表.

繁殖年限(年)

3

4

5

6

王錦蛇(條)

20

60

80

40

烏梢蛇(條)

30

80

70

20

若王錦蛇、烏梢蛇成年母蛇的購買成本分別為650元/條、600元/條,每條母蛇平均可為養(yǎng)殖場獲得1200元/年的銷售額,且每條蛇的繁殖年限均為整數(shù),將每條蛇的繁殖年限的頻率看作概率,以每條蛇所獲得的毛利潤(毛利潤=總銷售額-購買成本)的期望值作為購買蛇類的依據(jù),試問:應購買哪類蛇?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,已知曲線的參數(shù)方程為為參數(shù)),以坐標原點為極點,軸的正半軸為極軸,建立極坐標系,直線的極坐標方程為.

1)求曲線的普通方程和直線的直角坐標方程;

2)若射線的極坐標方程為.相交于點,相交于點,求.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)求函數(shù)的單調區(qū)間;

(2)若對任意,函數(shù)的圖像不在軸上方,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】部分與整體以某種相似的方式呈現(xiàn)稱為分形,一個數(shù)學意義上分形的生成是基于一個不斷迭代的方程式,即一種基于遞歸的反饋系統(tǒng).分形幾何學不僅讓人們感悟到科學與藝木的融合,數(shù)學與藝術審美的統(tǒng)一,而且還有其深刻的科學方法論意義.如圖,由波蘭數(shù)學家謝爾賓斯基1915年提出的謝爾賓斯基三角形就屬于-種分形,具體作法是取一個實心三角形,沿三角形的三邊中點連線,將它分成4個小三角形,去掉中間的那一個小三角形后,對其余3個小三角形重復上述過程逐次得到各個圖形.

若在圖④中隨機選。c,則此點取自陰影部分的概率為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2018122日,依照中國文聯(lián)及中國民間文藝家協(xié)會命名中國觀音文化之鄉(xiāng)的有關規(guī)定,中國文聯(lián)、中國民協(xié)正式命名四川省遂寧市為中國觀音文化之鄉(xiāng)”.

下表為2014年至2018年觀音文化故里某土特產企業(yè)的線下銷售額(單位:萬元)

年份

2014

2015

2016

2017

2018

線下銷售額

90

170

210

280

340

為了解祝福觀音、永保平安活動的支持度.某新聞調查組對40位老年市民和40位年輕市民進行了問卷調查(每位市民從很支持支持中任選一種),其中很支持的老年市民有30人,支持的年輕市民有15.

1)從以上5年中任選2年,求其銷售額均超過200萬元的概率;

2)請根據(jù)以上信息列出列聯(lián)表,并判斷能否有85%的把握認為支持程度與年齡有關.

附:,其中

參考數(shù)據(jù):

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

同步練習冊答案