分析 利用特殊角的三角函數(shù)值,兩角差的余弦函數(shù)公式化簡(jiǎn)可得sinx+cosx=$\frac{3\sqrt{2}}{5}$,兩邊平方利用二倍角的正弦函數(shù)公式即可得解sin2x的值.
解答 解:∵cos($\frac{π}{4}$-x)=$\frac{\sqrt{2}}{2}$cosx+$\frac{\sqrt{2}}{2}$sinx=$\frac{3}{5}$,
∴可得:sinx+cosx=$\frac{3\sqrt{2}}{5}$,
∴兩邊平方可得:1+sin2x=$\frac{18}{25}$,解得:sin2x=$-\frac{7}{25}$.
故答案為:$-\frac{7}{25}$.
點(diǎn)評(píng) 本題主要考查了特殊角的三角函數(shù)值,兩角差的余弦函數(shù)公式,二倍角的正弦函數(shù)公式在三角函數(shù)化簡(jiǎn)求值中的應(yīng)用,考查了轉(zhuǎn)化思想,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | m-n-2=0 | B. | m+n-2=0 | C. | m+n-4=0 | D. | m-n+4=0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
年級(jí) | 高一 | 高二 | 高三 |
數(shù)量 | 50 | 150 | 100 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 函數(shù)y=g[g(x)]是偶函數(shù),函數(shù)y=f(x)g(x)是周期函數(shù) | |
B. | 函數(shù)y=g[g(x)]是奇函數(shù),函數(shù)y=f[g(x)]不一定是周期函數(shù) | |
C. | 函數(shù)y=g[g(x)]是偶函數(shù),函數(shù)y=f[g(x)]是周期函數(shù) | |
D. | 函數(shù)y=g[g(x)]是奇函數(shù),函數(shù)y=f(x)g(x)是周期函數(shù) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{5}{3}$ | B. | $\frac{2}{3}$ | C. | -$\frac{5}{3}$ | D. | -$\frac{4}{3}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com