分析 (1)在所給的等式中,令x=1,可得a0+a1+a2+…+a14=1 ①.
(2)在所給的等式中,令x=-1,可得a0-a1+a2-a3+…+a14=37 ②,由①②求得要求的式子的值.
解答 解:(1)在(1-x+x2)7=a0+a1x+a2x2+…+a14x14中,令x=1,
可得a0+a1+a2+…+a14=1 ①.
(2)(1-x+x2)7=a0+a1x+a2x2+…+a14x14中,令x=-1,
可得a0-a1+a2-a3+…+a14=37 ②.
由①-②可得2(a1+a3+a5+…+a13)=1-37,
∴a1+a3+a5+…+a13=$\frac{1{-3}^{7}}{2}$.
點評 本題主要考查二項式定理的應(yīng)用,注意根據(jù)題意,分析所給代數(shù)式的特點,通過給二項式的x賦值,求展開式的系數(shù)和,可以簡便的求出答案,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [2kπ+$\frac{π}{3}$,2kπ+$\frac{4π}{3}$](k∈Z) | B. | [2kπ-$\frac{π}{3}$,2kπ+$\frac{2π}{3}$](k∈Z) | ||
C. | [2kπ-$\frac{2π}{3}$,2kπ+$\frac{π}{3}$](k∈Z) | D. | [2kπ-$\frac{2π}{3}$,2kπ+$\frac{4π}{3}$](k∈Z) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | C${\;}_{3}^{2}$C${\;}_{198}^{3}$ | B. | C${\;}_{3}^{2}$C${\;}_{197}^{3}$+C${\;}_{3}^{3}$C${\;}_{197}^{2}$ | ||
C. | C${\;}_{200}^{5}$-C${\;}_{197}^{4}$ | D. | C${\;}_{200}^{5}$-C${\;}_{3}^{1}$C${\;}_{197}^{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com