11.已知橢圓$\frac{x^2}{4}+\frac{y^2}{3}=1$,試確定m的值,使得在此橢圓上存在不同兩點(diǎn)關(guān)于直線y=2x+m對(duì)稱.

分析 由題意設(shè)關(guān)于直線y=2x+m對(duì)稱的點(diǎn)為A,B,則AB的方程為y=-$\frac{1}{2}x+n$,聯(lián)立橢圓方程與直線方程,由判別式大于0求得n的范圍,利用根與系數(shù)的關(guān)系求出AB的中點(diǎn)C的坐標(biāo),再分別代入兩條直線方程,得到n與m的關(guān)系,再由n的范圍求得m的范圍.

解答 解:設(shè)關(guān)于直線y=2x+m對(duì)稱的點(diǎn)為A,B,則AB的方程為y=-$\frac{1}{2}x+n$,
由$\left\{\begin{array}{l}{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1}\\{y=-\frac{1}{2}x+n}\end{array}\right.$,消去y整理得:4x2-4nx+4n2-12=0.
即x2-nx+(n2-3)=0.
由△=n2-4n2+12>0,得-2<n<2.
設(shè)A(x1,y1),B(x2,y2),
則${x}_{1}+{x}_{2}=n,{x}_{1}{x}_{2}={n}^{2}-3$,再設(shè)AB的中點(diǎn)為C(x0,y0),
則${x}_{0}=\frac{{x}_{1}+{x}_{2}}{2}=\frac{n}{2}$,
又C在y=-$\frac{1}{2}x+n$上,得${y}_{0}=\frac{3}{4}n$,
C在y=2x+m上,得$\frac{3}{4}n=2×\frac{n}{2}+m$,即n=-4m.
則-2<-2m<2,得$-\frac{1}{2}$<m<$\frac{1}{2}$.

點(diǎn)評(píng) 本題考查直線與橢圓位置關(guān)系的應(yīng)用,考查了存在性問題的求解方法,訓(xùn)練了點(diǎn)關(guān)于線的對(duì)稱點(diǎn)的求法,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知橢圓C的中心為原點(diǎn),焦點(diǎn)在x軸上,離心率為$\frac{1}{2}$.兩個(gè)焦點(diǎn)分別為F1,F(xiàn)2,點(diǎn)P為橢圓C上一點(diǎn),△F1PF2的周長(zhǎng)為12.
(1)求橢圓C的方程;
(2)若|PF1|:|PF2|=11:5,求△PF1F2的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知矩陣$A=[{\begin{array}{l}{-1}&2\\ 1&x\end{array}}],B=[{\begin{array}{l}1&1\\ 2&{-1}\end{array}}]$,向量$\overrightarrow{a}$=$[{\begin{array}{l}2\\ y\end{array}}]$,若A$\overrightarrow{a}$=B$\overrightarrow{a}$,求實(shí)數(shù)x,y的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知正方形ABCD,過正方形中心O的直線MN分別交正方形的邊AB,CD于點(diǎn)M、N,則$\frac{{M{N^2}}}{{B{N^2}}}$最小值為$3-\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.在直角坐標(biāo)系中,求點(diǎn)(2x+3-x2,$\frac{2x-3}{2-x}$)在第四象限的充要條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.?dāng)?shù)列{an}滿足an=4an-1+3且a1=0,則此數(shù)列第5項(xiàng)是( 。
A.15B.255C.16D.63

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.求函數(shù)y=$\frac{{x}^{2}+7x+10}{x+1}$(x>-1)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知e是某種圓錐曲線的離心率,給定兩個(gè)命題p:lg(e2-2e-2)≥0,命題q:$|{1-\frac{e}{2}}|≥1$,若e使得命題“p且q”為假,“p或q”為真,判斷此圓錐曲線類型并說明你的理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.四棱柱ABCD-A1B1C1D1中,AB∥CD,CD=2,DD1=AB=1,P,Q為CC1,C1D1的中點(diǎn),求證:
(1)AQ∥平面BCC1B1;
(2)AC∥平面BPQ.

查看答案和解析>>

同步練習(xí)冊(cè)答案