10.(文科答)已知數(shù)列{an}及等差數(shù)列{bn},若a1=3,an=$\frac{1}{2}$an-1+1(n≥2),a1=b2,2a3+a2=b4,
(1)證明數(shù)列{an-2}為等比數(shù)列;
(2)求數(shù)列{bn}的通項公式;
(3)設(shè)數(shù)列{$\frac{1}{_{n}•_{n+1}}$}的前n項和為Tn,求Tn

分析 (1)由題意可知:an-2=$\frac{1}{2}$(an-1-2),a1-2=1,數(shù)列{an-2}為以1為首項,以$\frac{1}{2}$為公比的等比數(shù)列;
(2)由a1=b2,即可求得b2,2×($\frac{1}{4}$+2)+$\frac{1}{2}$+2=b4,求得b4的值,根據(jù)等差數(shù)列的性質(zhì),2d=b4-b2=4,d=2,bn=b2+(n-2)d=2n-1,即可求得數(shù)列{bn}的通項公式;
(3)由(2)可知:$\frac{1}{_{n}•_{n+1}}$=$\frac{1}{(2n-1)(2n+1)}$=$\frac{1}{2}$($\frac{1}{2n-1}$-$\frac{1}{2n+1}$),采用“裂項法”即可求得Tn

解答 解:(1)證明:an=$\frac{1}{2}$an-1+1,即an-2=$\frac{1}{2}$(an-1-2),
a1-2=1,
∴數(shù)列{an-2}為以1為首項,以$\frac{1}{2}$為公比的等比數(shù)列;
(2)∴an-2=($\frac{1}{2}$)n-1,即an=($\frac{1}{2}$)n-1+2,
b2=a1=3,
2a3+a2=b4,即2×($\frac{1}{4}$+2)+$\frac{1}{2}$+2=b4,
b4=7,
2d=b4-b2=4,d=2,
∴bn=b2+(n-2)d=2n-1,
∴數(shù)列{bn}的通項公式bn=2n-1;
(3)$\frac{1}{_{n}•_{n+1}}$=$\frac{1}{(2n-1)(2n+1)}$=$\frac{1}{2}$($\frac{1}{2n-1}$-$\frac{1}{2n+1}$),
數(shù)列{$\frac{1}{_{n}•_{n+1}}$}的前n項和為Tn,
Tn=$\frac{1}{2}$[(1-$\frac{1}{3}$)+($\frac{1}{3}$-$\frac{1}{5}$)+($\frac{1}{5}$-$\frac{1}{7}$)+…+($\frac{1}{2n-1}$-$\frac{1}{2n+1}$)],
=$\frac{1}{2}$(1-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{5}$+$\frac{1}{5}$-$\frac{1}{7}$+…+$\frac{1}{2n-1}$-$\frac{1}{2n+1}$),
=$\frac{1}{2}$(1-$\frac{1}{2n+1}$),
=$\frac{n}{2n+1}$,
∴數(shù)列{$\frac{1}{_{n}•_{n+1}}$}的前n項和為Tn=$\frac{n}{2n+1}$.

點評 本題考查求數(shù)列的通項公式,等差數(shù)列的性質(zhì),采用“裂項法”求數(shù)列的前n項和,考查計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=e2ax(a∈R)的圖象C在點P(1,f(1))處切線的斜率為e,記奇函數(shù)g(x)=kx+b(k,b∈R,k≠0)的圖象為l.
(1)求實數(shù)a,b的值;
(2)當(dāng)x∈(-1,2)時,圖象C恒在l的上方,求實數(shù)k的取值范圍;
(3)若圖象C與l有兩個不同的交點A,B,其橫坐標(biāo)分別是x1,x2,設(shè)x1<x2,求證:x1•x2<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.?dāng)?shù)列3,6,12,21,x,48…中的x等于( 。
A.29B.33C.34D.28

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知|$\overrightarrow{a}$|=1,|$\overrightarrow$|=2$\sqrt{3}$,|2$\overrightarrow{a}$-$\overrightarrow$|=2$\sqrt{7}$,則向量$\overrightarrow{a}$與$\overrightarrow$的夾角是( 。
A.150°B.120°C.60°D.30°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知△ABC中,角A,B,C所對的邊分別為a,b,c,且a=2,b=$\sqrt{6}$,∠A=45°,則∠C=15°或75°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.求下列關(guān)于x的不等式的解集:
(1)-x2+7x>6;          
(2)x2-x-a(a-1)>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.下列說法中錯誤的是( 。
A.“|x|>1”是“x>1”的必要不充分條件.
B.若命題p:?x∈R,2x<3.則¬p:?x∈R,2x≥3.
C.若p∧q為假命題,則p∨q也為假命題.
D.命題“若x+y≠5,則x≠2或y≠3”是真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.下列兩個變量之間的關(guān)系中,哪個是函數(shù)關(guān)系( 。
A.學(xué)生的性別與他的數(shù)學(xué)成績B.人的工作環(huán)境與健康狀況
C.女兒的身高與父親的身高D.正三角形的邊長與面積

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.若向量$\overrightarrow a$與$\overrightarrow a+2\overrightarrow b$的數(shù)量積為6,且$|{\overrightarrow a}|=2,|{\overrightarrow b}|=1$,則向量$\overrightarrow a,\overrightarrow b$的夾角為(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

同步練習(xí)冊答案