18.已知|$\overrightarrow{a}$|=1,|$\overrightarrow$|=2$\sqrt{3}$,|2$\overrightarrow{a}$-$\overrightarrow$|=2$\sqrt{7}$,則向量$\overrightarrow{a}$與$\overrightarrow$的夾角是(  )
A.150°B.120°C.60°D.30°

分析 根據(jù)平面向量的數(shù)量積,即可求出向量$\overrightarrow{a}$與$\overrightarrow$的夾角.

解答 解:設(shè)向量$\overrightarrow{a}$與$\overrightarrow$的夾角是θ,
∵|$\overrightarrow{a}$|=1,|$\overrightarrow$|=2$\sqrt{3}$,|2$\overrightarrow{a}$-$\overrightarrow$|=2$\sqrt{7}$,
∴${(2\overrightarrow{a}-\overrightarrow)}^{2}$=4${\overrightarrow{a}}^{2}$-4$\overrightarrow{a}$•$\overrightarrow$+${\overrightarrow}^{2}$
=4×12-4×1×2$\sqrt{3}$cosθ+${(2\sqrt{3})}^{2}$
=16-8$\sqrt{3}$cosθ=${(2\sqrt{7})}^{2}$,
解得cosθ=-$\frac{\sqrt{3}}{2}$,
又θ∈[0°,180°],
∴θ=150°,
∴向量$\overrightarrow{a}$與$\overrightarrow$的夾角是150°.
故選:A.

點(diǎn)評(píng) 本題考查了平面向量的數(shù)量積與應(yīng)用問(wèn)題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知函數(shù)f(x)=a(x+$\frac{1}{x}}$),(x>0,a>0),點(diǎn)P為函數(shù)y=f(x)圖象上一動(dòng)點(diǎn).
(1)當(dāng)a=2時(shí),過(guò)點(diǎn)P分別向y軸及直線y=2x作垂線,垂足分別為點(diǎn)A,B,試計(jì)算線段PA,PB長(zhǎng)度之積PA•PB的值;
(2)作曲線y=f(x)在點(diǎn)P處的切線l,記直線l與y軸及直線y=ax的交點(diǎn)分別為M,N,試計(jì)算線段PM,PN長(zhǎng)度比值$\frac{PM}{PN}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知(5x-$\frac{1}{\sqrt{x}}$)n的展開(kāi)式的各項(xiàng)系數(shù)之和為A,二項(xiàng)式系數(shù)之和為B,若A-B=56,則展開(kāi)式中常數(shù)項(xiàng)為( 。
A.10B.-10C.-15D.1 5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.曲線f(x)=x3+1在點(diǎn)(1,2)處的切線與x軸、直線x=2所圍成的三角形的面積為(  )
A.$\frac{25}{3}$B.$\frac{25}{6}$C.$\frac{8}{3}$D.$\frac{5}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.向量$\overrightarrow{a}$=(2,-3),$\overrightarrow$=(-4,x),且$\overrightarrow{a}$⊥$\overrightarrow$,則x=( 。
A.$\frac{8}{3}$B.-$\frac{8}{3}$C.-6D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知$\overrightarrow{a}$=(-2,1),|$\overrightarrow$|=5,且$\overrightarrow{a}$∥$\overrightarrow$,則$\overrightarrow$=$(-2\sqrt{5},\sqrt{5})$或$(2\sqrt{5},-\sqrt{5})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.(文科答)已知數(shù)列{an}及等差數(shù)列{bn},若a1=3,an=$\frac{1}{2}$an-1+1(n≥2),a1=b2,2a3+a2=b4
(1)證明數(shù)列{an-2}為等比數(shù)列;
(2)求數(shù)列{bn}的通項(xiàng)公式;
(3)設(shè)數(shù)列{$\frac{1}{_{n}•_{n+1}}$}的前n項(xiàng)和為Tn,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知半徑為2的圓的圓心在x軸上,圓心的橫坐標(biāo)是正數(shù),且與直線4x-3y+2=0相切.
(1)求圓的方程;
(2)若直線ax-y+5=0與圓總有公共點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.如圖,在正方體ABCD-A1B1C1D1中,AB1,BC1上分別有兩點(diǎn)E,F(xiàn),且$\frac{{B}_{1}E}{EA}$=$\frac{{C}_{1}F}{FB}$=$\frac{1}{2}$,求證:EF∥平面ABCD.

查看答案和解析>>

同步練習(xí)冊(cè)答案