已知曲線E:ax2+by2=1(a>0,b>0),經(jīng)過點(diǎn)M的直線l與曲線E交于點(diǎn)A、B,且=-2.

(1)若點(diǎn)B的坐標(biāo)為(0,2),求曲線E的方程;

(2)若a=b=1,求直線AB的方程.

 

(1)x2+=1(2)y=x-1.

【解析】(1)設(shè)A(x0,y0),由已知B(0,2),M(,0),所以,=(x0-,y0).

由于=-2,所以(-,2)=-2(x0-,y0),所以即A(,-1),將A、B點(diǎn)的坐標(biāo)代入曲線E的方程,得解得

所以曲線E的方程為x2+=1.

(2)當(dāng)a=b=1時(shí),曲線E為圓x2+y2=1,設(shè)A(x1,y1),B(x2,y2).又=-2,

所以=-2(x1-,y1),

即有=1①,=1②,由①×4-②,得(2x1+x2)(2x1-x2)=3,所以2x1-x2=,解得x1=,x2=0.由x1=,得y1=±.當(dāng)A時(shí),B(0,-1),此時(shí)kAB=-,直線AB的方程為y=-x+1;

當(dāng)A時(shí),B(0,1),此時(shí)kAB=,直線AB的方程為y=x-1.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第九章第4課時(shí)練習(xí)卷(解析版) 題型:解答題

求過兩點(diǎn)A(1,4)、B(3,2)且圓心在直線y=0上的圓的標(biāo)準(zhǔn)方程,并判斷點(diǎn)P(2,4)與圓的關(guān)系.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第九章第11課時(shí)練習(xí)卷(解析版) 題型:解答題

如圖,橢圓E:=1(a>b>0)的左焦點(diǎn)為F1,右焦點(diǎn)為F2,離心率e=.過F1的直線交橢圓于A、B兩點(diǎn),且△ABF2的周長為8.

(1)求橢圓E的方程;

(2)設(shè)動直線l:y=kx+m與橢圓E有且只有一個公共點(diǎn)P,且與直線x=4相交于點(diǎn)Q.試探究:在坐標(biāo)平面內(nèi)是否存在定點(diǎn)M,使得以PQ為直徑的圓恒過點(diǎn)M?若存在,求出點(diǎn)M的坐標(biāo);若不存在,說明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第九章第10課時(shí)練習(xí)卷(解析版) 題型:填空題

若雙曲線=1(a>0,b>0)的左、右焦點(diǎn)分別為F1、F2,線段F1F2被拋物線y2=2bx的焦點(diǎn)分成7∶3的兩段,則此雙曲線的離心率為________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第九章第10課時(shí)練習(xí)卷(解析版) 題型:解答題

已知橢圓C:=1(a>b>0)的一個頂點(diǎn)為A(2,0),離心率為.直線y=k(x-1)與橢圓C交于不同的兩點(diǎn)M,N.

(1)求橢圓C的方程;

(2)當(dāng)△AMN的面積為時(shí),求k的值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第九章第10課時(shí)練習(xí)卷(解析版) 題型:填空題

直線y=kx-k+1與橢圓=1的位置關(guān)系是________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年陜西西工大附中高三上學(xué)期第四次適應(yīng)性訓(xùn)練理數(shù)學(xué)卷(解析版) 題型:填空題

以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C1的極坐標(biāo)方程為ρsin+m=0,曲線C2的參數(shù)方程為(0<α<π),若曲線C1與C2有兩個不同的交點(diǎn),則實(shí)數(shù)m的取值范圍是____________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年陜西西工大附中高三上學(xué)期第四次適應(yīng)性訓(xùn)練文數(shù)學(xué)卷(解析版) 題型:解答題

已知函數(shù)(e為自然對數(shù)的底數(shù))

(1)求的最小值;

(2)若對于任意的,不等式恒成立,求實(shí)數(shù)的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年陜西西安鐵一中國際合作學(xué)校高三下第一次模擬考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:選擇題

已知函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/GZSX/web/STSource/2014111719461151178050/SYS201411171946122931792357_ST/SYS201411171946122931792357_ST.002.png">,的定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/GZSX/web/STSource/2014111719461151178050/SYS201411171946122931792357_ST/SYS201411171946122931792357_ST.004.png">,則( )

A. B. C. D.

 

查看答案和解析>>

同步練習(xí)冊答案