20.在△ABC中,若$A=\frac{π}{3},tanB=\frac{1}{2},AB=2\sqrt{3}+1$,則BC=$\sqrt{15}$.

分析 由tanB的值大于0,且B為三角形的內(nèi)角,根據(jù)同角三角函數(shù)間的基本關(guān)系求出sinB的值,再由C=π-(A+B),利用誘導(dǎo)公式及兩角和與差的正弦函數(shù)公式化簡(jiǎn)sjnC,利用正弦定理即可求出BC的長(zhǎng).

解答 解:∵tanB=$\frac{1}{2}$>0,且B為三角形的內(nèi)角,
∴sinB=$\sqrt{1-co{s}^{2}B}$=$\sqrt{1-\frac{1}{1+ta{n}^{2}B}}$=$\frac{\sqrt{5}}{5}$,cosB=$\frac{2\sqrt{5}}{5}$.
∴sinC=sin[π-(A+B)]=sin(A+B)=sinAcosB+cosAsinB=$\frac{\sqrt{3}}{2}×\frac{2\sqrt{5}}{5}$+$\frac{1}{2}×\frac{\sqrt{5}}{5}$=$\frac{2\sqrt{15}+\sqrt{5}}{10}$,
又AB=$2\sqrt{3}+1$,
∴根據(jù)正弦定理$\frac{AB}{sinC}=\frac{BC}{sinA}$得:BC=$\frac{ABsinA}{sinC}$=$\frac{(2\sqrt{3}+1)×\frac{\sqrt{3}}{2}}{\frac{2\sqrt{15}+\sqrt{5}}{10}}$=$\sqrt{15}$.
故答案為:$\sqrt{15}$.

點(diǎn)評(píng) 此題考查了同角三角函數(shù)間的基本關(guān)系,兩角和與差的正弦函數(shù)公式,誘導(dǎo)公式,以及正弦定理,熟練掌握公式及定理是解本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知等差數(shù)列{an}的首項(xiàng)為a,公差為d,且不等式ax2-3x+2<0的解集為(1,d).
(1)求數(shù)列{an}的通項(xiàng)公式an
(2)若bn=3an+an-1,求數(shù)列{bn}前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.命題“?x∈(0,+∞),lnx≠x-1”的否定是( 。
A.?x0∈(0,+∞),lnx0=x0-1B.?x0∉(0,+∞),lnx0=x0-1
C.?x0∈(0,+∞),lnx0=x0-1D.?x0∉(0,+∞),lnx0=x0-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.將函數(shù)$f(x)=\frac{{\sqrt{2}}}{2}sin2x+\frac{{\sqrt{6}}}{2}cos2x$的圖象向右平移$\frac{π}{4}$個(gè)單位后得到函數(shù)g(x)的圖象,則$g(\frac{π}{12})$=(  )
A.0B.-1C.$\sqrt{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.關(guān)于相關(guān)指數(shù)R2,下列說(shuō)法正確的是( 。
A.R2越大,線性相關(guān)系數(shù)r越小
B.R2越小,線性相關(guān)系數(shù)越小
C.R2越大,線性相關(guān)程度越小,R2越接近0,線性先關(guān)程度越大
D.R2≥0且R2越接近1,線性相關(guān)程度越大,R2越接近0,線性相關(guān)程度越小

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知圓C的圓心坐標(biāo)為(3,2),且過(guò)定點(diǎn)O(0,0).
(1)求圓C的方程;
(2)P為圓C上的任意一點(diǎn),定點(diǎn)Q(8,0),求線段PQ中點(diǎn)M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.在直角坐標(biāo)xOy中,直線l的參數(shù)方程為$\left\{{\begin{array}{l}{x=3+\frac{1}{2}t}\\{y=\frac{{\sqrt{3}}}{2}t}\end{array}}\right.$(t為參數(shù)),以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,圓C的極坐標(biāo)方程為$ρ=2\sqrt{3}sinθ$.
(1)寫(xiě)出圓C的直角坐標(biāo)方程及直線l的直角坐標(biāo)方程;
(2)P為直線l上一動(dòng)點(diǎn),當(dāng)P到圓心C的距離最小時(shí),求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.已知函數(shù)f(x)對(duì)任意的實(shí)數(shù)滿足:$f(x+3)=-\frac{1}{f(x)}$,且當(dāng)-3≤x<-1時(shí),f(x)=-(x+2)2,當(dāng)-1≤x<3時(shí),f(x)=x,則f(1)+f(2)+f(3)+…+f(2015)=336.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.等差數(shù)列{an}中,a2+a5=4,S7=21,則a7等于( 。
A.6B.7C.8D.9

查看答案和解析>>

同步練習(xí)冊(cè)答案