已知函數(shù),對(duì)任意,都有,則函數(shù)的最大值與最小值之和是         .
3

試題分析:因?yàn)椋?img src="http://thumb.1010pic.com/pic2/upload/papers/20140824/20140824013311528881.png" style="vertical-align:middle;" />,所以有:設(shè)x∈R,t>0,x+t>x,則

∴f(x)在R上是單調(diào)函數(shù),g(x) 在R上是單調(diào)函數(shù)。
令x=y=0,則f(0)+f(0)=f(0+0)+m,∴f(0)=m
令x=0,y=1,則,f(1)=f(0)+f(1)+m,所以,f(0)=-m,故,m=0.
∴g(x)min +g(x)max =f(-1)+m++f(1)+m+,2m+=3.
點(diǎn)評(píng):中檔題,利用抽象函數(shù),研究函數(shù)的單調(diào)性,從而認(rèn)識(shí)到函數(shù)取到最值的情況。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù)對(duì)于任意的,導(dǎo)函數(shù)都存在,且滿足≤0,則必有(    )
A.>B.
C.<D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知
(1)求當(dāng)時(shí),函數(shù)的表達(dá)式;
(2)作出函數(shù)的圖象,并指出其單調(diào)區(qū)間。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)函數(shù),若則函數(shù)的最小值是     (      )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù),.
(Ⅰ) 求函數(shù)在點(diǎn)處的切線方程;
(Ⅱ) 若函數(shù)在區(qū)間上均為增函數(shù),求的取值范圍;
(Ⅲ) 若方程有唯一解,試求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù),,若函數(shù)處的切線方程為,
(1)求的值;
(2)求函數(shù)的單調(diào)區(qū)間。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)f(x)在定義域R內(nèi)可導(dǎo),若f(x)=f(4-x),且當(dāng)x∈(-∞,2)時(shí),(x-2)·f′(x)<0,設(shè)af(4),bf(1), cf(-1),則a,b,c由小到大排列為  (    )
A.a<b<cB.a<c<bC.c<b<aD.c<a<b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)
(Ⅰ)若曲線在點(diǎn)處的切線與直線垂直,求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若對(duì)于都有成立,試求的取值范圍;
(Ⅲ)記.當(dāng)時(shí),函數(shù)在區(qū)間上有兩個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知函數(shù)=,若互不相等的實(shí)數(shù)、、滿足,則 的取值范圍是   

查看答案和解析>>

同步練習(xí)冊(cè)答案