分析 化簡(jiǎn)函數(shù)的解析式,結(jié)合函數(shù)的圖象的特征,判斷此函數(shù)是否是斜同曲線.
解答 解:①y=ex-1,∴y′=ex是增函數(shù),∴任意兩點(diǎn)處的切線斜率都不相等,不是斜同曲線;
②y=x2-|x|=$\left\{\begin{array}{l}{(x-\frac{1}{2})^{2}-\frac{1}{4},x≥0}\\{(x+\frac{1}{2})^{2}-\frac{1}{4},x<0}\end{array}\right.$,在 x=$\frac{1}{2}$和 x=-$\frac{1}{2}$處的切線都是y=-$\frac{1}{4}$,故②是斜同曲線;
③由于|x|+1=$\sqrt{4-{y^2}}$,即 x2+2|x|+y2-3=0,結(jié)合圖象是兩段圓弧,在 x=1和 x=-1處的切線平行,可得③是斜同曲線;
④y=|x|+$\frac{2}{|x|}$在 x=$\sqrt{2}$和 x=-$\sqrt{2}$處的切線都是y=2$\sqrt{2}$,故④是斜同曲線.
故答案為:②③④.
點(diǎn)評(píng) 本題考查斜同曲線的定義,函數(shù)圖象的特征,準(zhǔn)確判斷一個(gè)函數(shù)是斜同曲線是解題的難點(diǎn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-1,0)∪(1,+∞) | B. | (-1,0)和(1,+∞) | C. | (-∞,-1)∪(0,1) | D. | (-∞,-1)和(0,1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 等腰梯形 | B. | 平行四邊形 | C. | 直角梯形 | D. | 以上答案都不對(duì) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com