15.設(shè)α,β,γ為兩兩不重合的平面,l,m,n為兩兩不重合的直線,給出下列四個命題:
①若m?α,n?β,α⊥β,則m⊥n;
②若m⊥α,n∥β且α∥β,則m⊥n;
③若α∥β,l?α,則l∥β;
④若α∩β=l,β∩γ=m,γ∩α=n,l∥γ,則m∥n.
其中真命題的序號有②③④.

分析 ①,在兩個垂直平面內(nèi)各取一條直線,它們不一定垂直;
②,由m⊥α且α∥β⇒m⊥β,又因為n∥β∴m⊥n,;
③,由α∥β,l?α⇒直線l與平面β無公共點;
④,由線面平行的性質(zhì)定理J及公理,即可得到則m∥n.

解答 解:對于①,在兩個相互垂直的平面內(nèi)各取一條直線,它們不一定垂直,即m?α,n?β,α⊥β,則m、n不一定垂直,故錯;
對于②,若m⊥α且α∥β⇒m⊥β又∵n∥β,則m⊥n,故正確;
對于③,若α∥β⇒平面α、β無公共點,又∵l?α⇒l與β無公共點,即l∥β,故正確;
對于④,由α∩β=l,β∩γ=m,γ∩α=n,線面平行的性質(zhì)定理⇒n∥γ,根據(jù)平行公理,即可得到則m∥n,故正確
故答案為:②③④

點評 本題考查了空間線線,線面、面面位置關(guān)系,考查了空間想象能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.若$\underset{lim}{x→0}$$\frac{sin2x}{ax}$=$\frac{2}{3}$,則a=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.等差數(shù)列{an}中,a3=4,a7=16,則a11=28.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.若存在實數(shù)|a-2|≤2成立,則實數(shù)a的取值范圍是[0,4].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.在2和8之間插入3個數(shù),使它們與這兩個數(shù)依次構(gòu)成等比數(shù)列,則這3個數(shù)的積為( 。
A.±64B.64C.±16D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.極坐標系與直角坐標系xOy有相同的長度單位,以原點O為極點,以x軸正半軸為極軸.已知曲線C1的極坐標方程為ρ=2$\sqrt{2}$sin($θ+\frac{π}{4}$),直線C的極坐標方程為ρsinθ=1,射線θ=φ,θ=$\frac{π}{4}$+φ(φ∈[0,π])與曲線C1分別交異于極點O的兩點A,B.
(I)把曲線C1和C2化成直角坐標方程,并求直線C2被曲線C1截得的弦長;
(II)求|OA|2+|OB|2的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知橢圓C:x2+4y2=16,點M(2,1).
(1)求橢圓C的焦點坐標和離心率;
(2)求通過M點且被這點平分的弦所在的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)為奇函數(shù),且當(dāng)x>0時,$f(x)={log_{\frac{1}{3}}}$2x
(1)求當(dāng)x<0時,函數(shù)f(x)的表達式            
(2)解不等式f(x)≤3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.求值:$\frac{1}{\sqrt{2}-1}$-($\frac{3}{5}$)0+($\frac{9}{4}$)-0.5+$\root{4}{(\sqrt{2}-2)^{4}}$.

查看答案和解析>>

同步練習(xí)冊答案