3.如圖,四棱錐P-ABCD的底面是直角梯形,∠ABC=∠BCD=90°,BC=AB,△PBC為等邊三角形,平面PBC⊥平面ABCD.
(1)求證:AB∥平面PCD;
(2)求直線PA與平面ABCD所成角的正切值.

分析 (1)根據(jù)線面平行的判定定理證明CD∥AB,即可證明AB∥平面PCD;
(2)取BC的中點(diǎn)O,則PO⊥平面ABCD,則∠PAO是直線PA與平面ABCD所成的角,根據(jù)三角形的邊角關(guān)系進(jìn)行求解即可.

解答 (1)證明:∵底面ABCD是直角梯形,∠ABC=∠BCD=90°,
∴CD∥AB,
∵CD?平面PCD,AB?平面PCD
∴AB∥平面PCD;
(2)∵△PBC為等邊三角形,
∴取BC的中點(diǎn)O,
則PO⊥BC,
∵平面PBC⊥平面ABCD,
∴PO⊥平面ABCD,
則OA是PA在底面ABCD的射影,
則∠PAO是直線PA與平面ABCD所成的角,
設(shè)BC=AB=1,
則PB=1,OB=$\frac{1}{2}$,
則PO=$\frac{\sqrt{3}}{2}$,OA=$\sqrt{O{B}^{2}+A{B}^{2}}$=$\sqrt{\frac{1}{4}+1}=\sqrt{\frac{5}{4}}$=$\frac{\sqrt{5}}{2}$,
則tan∠PAO=$\frac{PO}{OA}$=$\frac{\frac{\sqrt{3}}{2}}{\frac{\sqrt{5}}{2}}=\frac{\sqrt{3}}{\sqrt{5}}$=$\frac{\sqrt{15}}{5}$,
即直線PA與平面ABCD所成角的正切值是$\frac{\sqrt{15}}{5}$.

點(diǎn)評(píng) 本題主要考查線面平行的判斷以及線面所成角的求解,根據(jù)線面平行的判定定理以及線面角的定義作出平面角是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知拋物線y=ax2(a>0)的焦點(diǎn)到準(zhǔn)線的距離為$\frac{1}{2}$,過(guò)y軸正半軸上一點(diǎn)C(0,c)作直線,與拋物線交于A,B兩點(diǎn).
(Ⅰ)求a的值;
(Ⅱ)若P為線段AB的中點(diǎn),過(guò)點(diǎn)P作PQ⊥x軸,交直線l:y=-c于點(diǎn)Q,求證:QA,QB為拋物線的切線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.在平面直角坐標(biāo)系xOy中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知在極坐標(biāo)系中,A(3$\sqrt{3}$,$\frac{π}{2}$),B(3,$\frac{π}{3}$),圓C的方程為ρ=2cosθ.
(1)求在平面直角坐標(biāo)系xOy中圓C的標(biāo)準(zhǔn)方程;
(2)已知P為圓C上的任意一點(diǎn),求△ABP面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知曲線C1的參數(shù)方程為$\left\{\begin{array}{l}{x=3+5cost}\\{y=5+5sint}\end{array}\right.$(t為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系得曲線C2的極坐標(biāo)方程為ρ=2sinθ.
(Ⅰ)把C1的參數(shù)方程化為極坐標(biāo)方程;
(Ⅱ)將曲線C1向右移動(dòng)1個(gè)單位得到曲線C3,求C3與C2交點(diǎn)的極坐標(biāo)(ρ≥0,0≤θ<2π)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.如圖,四棱錐P-ABCD的底面是菱形,∠DAB=60°,PA⊥AD,平面PAB⊥平面ABCD,AP=2,AD=2.
(I)求證:PA⊥平面ABCD;
(Ⅱ)已知M是PB的中點(diǎn),求MC與平面AMB所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知四棱錐P-ABCD如圖所示,其中四邊形ABCD是等腰梯形,且∠ADC+∠DAB=180°,AB=2AD=2DC=2BC=4,PA=PC,平面PAC⊥平面ABCD,點(diǎn)P到平面ABCD的距離為$\sqrt{3}$.
(Ⅰ)求證:PA⊥BC;
(Ⅱ)求直線BP與平面PCD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.如圖,四邊形ABCD是圓O的內(nèi)接四邊形,AB是圓O的直徑,BC=CD,AD的延長(zhǎng)線與BC的延長(zhǎng)線交于點(diǎn)E,過(guò)C作CF⊥AE,垂足為點(diǎn)F
(Ⅰ)證明:CF是圓O的切線;
(Ⅱ)若BC=4,AE=9,求CF的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.如圖(1),在三角形PCD中,AB為其中位線,且2BD=PC=2$\sqrt{6}$,CD=2$\sqrt{2}$,若沿AB將三角形PAB折起,使∠PAD=120°,構(gòu)成四棱錐P-ABCD,構(gòu)成四棱錐P-ABCD(如圖2),且$\frac{PC}{PF}$=$\frac{CD}{CE}$=2
(1)求證:平面BEF⊥平面PAB;
(2)求平面PBC與平面PAD所成的二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知函數(shù)f(x)=sin2x+2$\sqrt{3}$sinxcosx+sin(x+$\frac{π}{4}$)sin(x-$\frac{π}{4}$).
(1)求f(x)的單調(diào)增區(qū)間;
(2)若x0為f(x)的一個(gè)零點(diǎn)(0≤x0≤$\frac{π}{2}$),求cos2x0的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案