7.證明:$\frac{cosα}{cot\frac{α}{2}-tan\frac{α}{2}}$=$\frac{1}{2}$sinα

分析 利用正切余切函數(shù)的定義,寫成正弦和余弦的形式,同分,再利用倍角公式求得$\frac{1}{2}$sinα.

解答 證明:原式左邊=$\frac{cosα}{cot\frac{α}{2}-tan\frac{α}{2}}$=$\frac{cosα}{\frac{cos\frac{α}{2}}{sin\frac{α}{2}}-\frac{sin\frac{α}{2}}{cos\frac{α}{2}}}$=$\frac{cosα}{\frac{co{s}^{2}\frac{α}{2}-si{n}^{2}\frac{α}{2}}{sin\frac{α}{2}cos\frac{α}{2}}}$=$\frac{1}{2}$sinα=右邊,
∴$\frac{cosα}{cot\frac{α}{2}-tan\frac{α}{2}}$=$\frac{1}{2}$sinα,等式成立.

點(diǎn)評(píng) 本題考查三角恒等變換,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知直線l的斜率k滿足-1≤k<1,則它的傾斜角α的取值范圍是( 。
A.-45°<α<45°B.0°≤α<45°或135°≤α<180°
C.0°<α<45°或135°<α<180°D.-45°≤α<45°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.據(jù)報(bào)我國(guó)正分別在大連和上海建造兩航母,而建造航母必需特種鋼.為建造航母的需要,要將兩種不同的特種鋼板截成A、B、C三種規(guī)格,每張鋼板可同時(shí)截成三種規(guī)格的小鋼板的塊數(shù)如下表所示:
規(guī)格類型
鋼板類型
A規(guī)格B規(guī)格C規(guī)格
第一種鋼板211
第二種鋼板123
今需要A、B、C三種規(guī)格的成品分別15、18、27塊.問(wèn)各截這兩種鋼板多少?gòu)埧傻盟枞N規(guī)格成品,且使所用鋼板張數(shù)最少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知奇函數(shù)f(x)滿足對(duì)任意x∈R都有f(x+6)=f(x)+f(3)成立,且f(1)=1,則f(2015)+f(2016)=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.下列四個(gè)命題:
①如果θ是第二象限角,則sinθ•tanθ<0;
②如果sinθ•tanθ<0,則θ是第二象限角;
③sin1•cos2•tan3>0;
④如果θ∈($\frac{3π}{2},2π$),則sin(π+θ)>0.
其中正確的是①③④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.直線l1:y=$\frac{1}{2}$x+b與l2:y=$\frac{1}{2}$x+b+8關(guān)于點(diǎn)A(4,6)對(duì)稱,求b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.已知向量$\overrightarrow{a}$=(2,1),$\overrightarrow$=(3,m),若$\overrightarrow{a}$⊥($\overrightarrow{a}$-$\overrightarrow$),則|2$\overrightarrow{a}$+$\overrightarrow$|=5$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.經(jīng)過(guò)兩個(gè)點(diǎn)M(3,-2)與N(-1,-4)且圓心在直線x+3y+1=0上的圓的標(biāo)準(zhǔn)方程為($x+\frac{2}{5}$)2+(y+$\frac{1}{5}$)2=$\frac{74}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知$\overrightarrow{a}$=(2,3),$\overrightarrow$=(-2,4),$\overrightarrow{c}$=(-1,-2).
(1)求$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$任意兩個(gè)向量夾角的余弦值;
(2)求$\overrightarrow{a}•\overrightarrow$,($\overrightarrow{a}-\overrightarrow$)•($\overrightarrow{a}+\overrightarrow$),$\overrightarrow{a}•(\overrightarrow+\overrightarrow{c})$,($\overrightarrow{a}+\overrightarrow$)2的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案