A. | 33π | B. | 34π | C. | 36π | D. | 42π |
分析 由已知可得該幾何體是一個$\frac{7}{8}$球與圓柱的組合體,設球的半徑為R,則圓的底面半徑,高均為R,根據(jù)體積求出R,進而可得答案.
解答 解:由已知可得該幾何體是一個$\frac{7}{8}$球與圓柱的組合體,
設球的半徑為R,則圓的底面半徑,高均為R,
故組合體的體積V=$\frac{7}{8}•\frac{4}{3}{πR}^{3}+{πR}^{3}$=${\frac{13}{6}πR}^{3}$=$\frac{52π}{3}$,
解得:R=2,
故此幾何體的表面積S=2πR(R+R)+$\frac{7}{8}$×4πR2+$\frac{3}{4}{πR}^{2}$=$\frac{33}{4}{πR}^{2}$=33π,
故選:A
點評 本題考查的知識點是由三視圖求體積和表面積,根據(jù)已知計算出R值,是解答的關(guān)鍵.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1個 | B. | 2個 | C. | 3個 | D. | 4個 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 8 | B. | 7 | C. | $\frac{23}{3}$ | D. | $\frac{22}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1個 | B. | 2個 | C. | 3個 | D. | 4個 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com