17.設(shè)偶函數(shù)f(x)的定義域?yàn)閇-4,0)∪(0,4],若當(dāng)x∈(0,4]時(shí),f(x)=log2x,
(1)求出函數(shù)在定義域[-4,0)∪(0,4]的解析式;
(2)求不等式xf(x)<0得解集.

分析 (1)根據(jù)f(x)是偶函數(shù),f(-x)=f(x),當(dāng)x∈(0,4]時(shí),f(x)=log2x,可求x∈[-4,0)的解析式.
(2)根據(jù)定義域的不同,解析式不同,分類(lèi)解不等式即可.

解答 解:(1)由題意知:f(x)是偶函數(shù),即f(-x)=f(x),
當(dāng)x∈(0,4]時(shí),f(x)=log2x,
那么:當(dāng)x∈[-4,0)時(shí),則-x∈(0,4],
可得:f(-x)=log2-x,
∵f(-x)=f(x),
∴f(x)=log2-x,
故得f(x)的函數(shù)解析式為:$f(x)=\left\{\begin{array}{l}{lo{g}_{2}x,(0<x≤4)}\\{lo{g}_{2}-x,(-4≤x<0)}\end{array}\right.$
(2)當(dāng)0<x≤4時(shí),f(x)=log2x,
∵0<x<1時(shí),f(x)<0,
不等式xf(x)<0恒成立.
當(dāng)-4≤x<0時(shí),f(x)=log2-x,
∵-4≤x<-1時(shí),f(x)>0,
不等式xf(x)<0恒成立.
綜上所述:不等式的解集為(-4,-1)∪(0,1).

點(diǎn)評(píng) 本題考考查了分段函數(shù)的解析式的求法以及不等式的解集轉(zhuǎn)化為恒成立來(lái)求解.屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.下列命題正確的個(gè)數(shù)為( 。
①若函數(shù)y=f(x)是定義在R上的增函數(shù),且滿(mǎn)足f(1)=0,f(a)+f(b)=f(a+b)-1,那么關(guān)于x的不等式f(x2-1)+f(1-x)>0的解集為{x|x<-1或x>2}
②若函數(shù)f(x)=(a2-a-2)x2+(a+1)x+2的定義域和值域都為R,則a=2;
③已知函數(shù)f(x)=x+a,g(x)=2x+1,若對(duì)任意的x1∈[-1,1]都存在x2∈[-1,1],使得f(x1)=g(x2),則0≤a≤2
④已知函數(shù)f(x)=x+a,g(x)=2x+1,若存在x1,x2∈[-1,1],使得f(x1)=g(x2),則-2≤a≤2.
A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知對(duì)任意實(shí)數(shù)x,不等式mx2-(3-m)x+1>0成立或不等式mx>0成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知下列四個(gè)命題:
①函數(shù)f(x)=$\frac{1}{3}$x-lnx(x>0),則y=f(x)在區(qū)間($\frac{1}{e}$,1)內(nèi)無(wú)零點(diǎn),在區(qū)間(1,e)內(nèi)有零點(diǎn);
②函數(shù)f(x)=log2(x+$\sqrt{1+{x^2}}$),g(x)=1+$\frac{2}{{{2^x}-1}}$不都是奇函數(shù);
③若函數(shù)f(x)滿(mǎn)足f(x-1)=-f(x+1),且f(1)=2,則f(7)=-2;
④設(shè)x1、x2是關(guān)于x的方程|logax|=k(a>0且a≠1)的兩根,則x1x2=1,
其中正確命題的序號(hào)是①③④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.已知映射f:(x,y)→(x-2y,2x+x),則(2,4)→(-6,6),(1,3)→(-5,3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.若函數(shù)f(x)=|x+a|的圖象關(guān)于y軸對(duì)稱(chēng),則f(x)的單調(diào)減區(qū)間為(-∞,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.函數(shù)f(x)=$\frac{1}{x}$+lg(1-2x)定義域?yàn)閧x|x<$\frac{1}{2}$且x≠0}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知橢圓:$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1,直線(xiàn)l:y=x+5$\sqrt{7}$,橢圓上任意點(diǎn)P,則點(diǎn)P到直線(xiàn)l的距離的最大值( 。
A.3$\sqrt{14}$B.2$\sqrt{7}$C.3$\sqrt{7}$D.2$\sqrt{14}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.設(shè)函數(shù)f(x)=x3+ax2-9x+3(a<0),且曲線(xiàn)y=f(x)斜率最小的切線(xiàn)與直線(xiàn)12x+y=6平行.試求:
(1)a的值;
(2)函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

同步練習(xí)冊(cè)答案