4.平面α截球O的球面所得圓的半徑為$\sqrt{2}$,球心O到平面α的距離為1,則此球的半徑為( 。
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

分析 利用平面α截球O的球面所得圓的半徑為$\sqrt{2}$,球心O到平面α的距離為1,利用勾股定理求出球的半徑.

解答 解:因?yàn)槠矫姒两厍騉的球面所得圓的半徑為$\sqrt{2}$,球心O到平面α的距離為1,
所以球的半徑為:$\sqrt{2+1}$=$\sqrt{3}$.
故選C.

點(diǎn)評 本題考查球的半徑的求法,考查空間想象能力、計(jì)算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知定義在(0,$\frac{π}{2}}$)上的函數(shù)f(x),f'(x)為其導(dǎo)數(shù),且f'(x)•sinx-cosx•f(x)>0恒成立,則( 。
A.$\sqrt{3}$f($\frac{π}{4}$)>$\sqrt{2}$f($\frac{π}{3}$)B.$\sqrt{2}$f($\frac{π}{6}$)>f($\frac{π}{4}$)C.f(1)<2f($\frac{π}{6}$)sin1D.$\sqrt{3}$f($\frac{π}{6}$)<f($\frac{π}{3}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.設(shè)$\overrightarrow{a}$,$\overrightarrow$為單位向量,若$\overrightarrow c$滿足|${\overrightarrow c$-(${\overrightarrow a$+$\overrightarrow b}$)|=|${\overrightarrow a$-$\overrightarrow b}$|,則|${\overrightarrow c}$|的最大值為2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知sin(α+$\frac{π}{6}}$)+cosα=-$\frac{{\sqrt{3}}}{3}$,則cos($\frac{π}{6}$-α)=( 。
A.$-\frac{{2\sqrt{2}}}{3}$B.$\frac{{2\sqrt{2}}}{3}$C.$-\frac{1}{3}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.下列函數(shù)中為偶函數(shù)又在(0,+∞)上是增函數(shù)的是( 。
A.y=($\frac{1}{2}$)|x|B.y=x2C.y=lnxD.y=2-x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.在公差為2的等差數(shù)列{an}中,2a9=a12+6,則a5=(  )
A.4B.6C.8D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知集合A={x|1≤2x+5≤13},B={y|y=$\frac{3}{2$x+2,x∈A},則A∩B等于(  )
A.B.[-1,4]C.[-2,4]D.[-4,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知全集U=R,集合A={x|y=log2(11-x2)>1},B={x|x2-x-6>0},M={x|x2+bx+c≥0}.
(1)求A∩B; 
(2)若∁UM=A∩B,求b、c的值.
(3)若x2+bx+c=0一個根在區(qū)間(0,1)內(nèi),另一根在區(qū)間(1,2)內(nèi),求z=-2b+c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知等差數(shù)列{an},a7=2.則前13項(xiàng)的和S13=(  )
A.13B.25C.26D.39

查看答案和解析>>

同步練習(xí)冊答案