A. | $\sqrt{3}$f($\frac{π}{4}$)>$\sqrt{2}$f($\frac{π}{3}$) | B. | $\sqrt{2}$f($\frac{π}{6}$)>f($\frac{π}{4}$) | C. | f(1)<2f($\frac{π}{6}$)sin1 | D. | $\sqrt{3}$f($\frac{π}{6}$)<f($\frac{π}{3}$) |
分析 構造函數g(x)=$\frac{f(x)}{sinx}$,求出g(x)的導數,得到函數g(x)的單調性,從而判斷出函數值的大小即可.
解答 解:由f′(x)sinx-f(x)cosx>0,
構造函數g(x)=$\frac{f(x)}{sinx}$,
則g′(x)=$\frac{f′(x)sinx-f(x)cosx}{si{n}^{2}x}$,
當x∈(0,$\frac{π}{2}$)時,g′(x)>0,
即函數g(x)在(0,$\frac{π}{2}$)上單調遞增,
∴g($\frac{π}{6}$)<g($\frac{π}{3}$),
∴$\sqrt{3}$f($\frac{π}{6}$)<f($\frac{π}{3}$),
故選:D.
點評 本題考查了導數的應用,考查函數的單調性問題,構造函數是解題的關鍵,本題是一道中檔題.
科目:高中數學 來源: 題型:選擇題
A. | 在研究身高和體重的相關性中,R2=0.64,表明身高解釋了$\begin{array}{l}64%\end{array}$的體重變化 | |
B. | 若a,b,c∈R,有(ab)•c=a•(bc),類比此結論,若向量$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$,有($\overrightarrow{a}$•$\overrightarrow$)•$\overrightarrow{c}$=$\overrightarrow{a}$•($\overrightarrow$•$\overrightarrow{c}$), | |
C. | 在吸煙與患肺癌是否相關的判斷中,由獨立性檢驗可知,在犯錯誤的概率不超過0.01的前提下,認為吸煙與患肺癌有關系,那么在100個吸煙的人中,必有99個人患肺癌 | |
D. | 若a,b∈R,則a-b>0⇒a>b,類比推出若a,b∈C,則a-b>0⇒a>b |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 12或-48 | B. | 32或-8 | C. | -32或8 | D. | -12或48 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 1 | B. | $\sqrt{2}$ | C. | $\sqrt{3}$ | D. | 2 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com