【題目】如圖所示,某村積極開展“美麗鄉(xiāng)村生態(tài)家園”建設(shè),現(xiàn)擬在邊長為1千米的正方形地塊ABCD上劃出一片三角形地塊CMN建設(shè)美麗鄉(xiāng)村生態(tài)公園,給村民休閑健身提供去處.點(diǎn)M,N分別在邊AB,AD上. (Ⅰ)當(dāng)點(diǎn)M,N分別是邊AB,AD的中點(diǎn)時(shí),求∠MCN的余弦值;

(Ⅱ)由于村建規(guī)劃及保護(hù)生態(tài)環(huán)境的需要,要求△AMN的周長為2千米,請?zhí)骄俊螹CN是否為定值,若是,求出此定值,若不是,請說明理由.

【答案】(1);(2)見解析.

【解析】試題分析:(Ⅰ)設(shè)∠DCN=∠BCM=θ,當(dāng)點(diǎn)M,N分別是邊AB,AD的中點(diǎn)時(shí),在直角三角形中可得sinθ= ,cosθ= ,然后利用cos∠MCN=cos( ﹣2θ)求解;

(Ⅱ)設(shè)∠BCM=α,∠DCN=β,探究α+β是否為定值即可。設(shè)AM=x,AN=y,則BM=1﹣x,DN=1﹣y,可得tanα=1﹣x,tanβ=1﹣y,于是得tan(α+β)= ,再由

△AMN的周長為2千米得xy=2(x+y)﹣2,代入后可得tan(α+β)=1.故可得α+β= ,于是可得∠MCN為定值。

試題解析:

(Ⅰ)當(dāng)點(diǎn)M,N分別是邊AB,AD的中點(diǎn)時(shí),設(shè)∠DCN=∠BCM=θ,則∠MCN= ﹣2θ,

由條件得CD=BC=1,DN=BM= ,CN=CM= ,

所以sinθ= ,cosθ= ,

所以cos∠MCN=cos( ﹣2θ)=sin2θ=2sinθcosθ= ,

即∠MCN的余弦值是

(Ⅱ)設(shè)∠BCM=α,∠DCN=β,AM=x,AN=y,則BM=1﹣x,DN=1﹣y,

在△CBM中,tanα=1﹣x,

在△CDN中,tanβ=1﹣y,

所以tan(α+β)= = = ,(*)

因?yàn)椤鰽MN的周長為2千米,

所以x+y+ =2,

化簡得xy=2(x+y)﹣2,

將上式代入(*)式,可得

tan(α+β)= = = =1,

,

所以α+β= ,

所以∠MCN是定值,且∠MCN=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)的定義域?yàn)?-3,3),

滿足f(-x)=-f(x),且對任意x,y,都有f(x)-f(y)=f(xy),當(dāng)x<0時(shí),f(x)>0,f(1)=-2.

(1)求f(2)的值;

(2)判斷f(x)的單調(diào)性,并證明;

(3)若函數(shù)g(x)=f(x-1)+f(3-2x),求不等式g(x)≤0的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱錐中,底面是正方形,側(cè)面底面,且,分別為的中點(diǎn).

(1)求證:平面

(2)在線段上是否存在點(diǎn),使得二面角的余弦值為,若存在,請求出點(diǎn)的位置;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在單位正方體 中,O 的中點(diǎn),如圖建立空間直角坐標(biāo)系.

(1)求證 ∥平面 ;

(2)求異面直線OD夾角的余弦值;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為推行“新課堂”教學(xué)法,某化學(xué)老師分別用傳統(tǒng)教學(xué)和“新課堂”兩種不同的教學(xué)方式,在甲、乙兩個(gè)平行班級(jí)進(jìn)行教學(xué)實(shí)驗(yàn).為了比較教學(xué)效果,期中考試后,分別從兩個(gè)班級(jí)中各隨機(jī)抽取20名學(xué)生的成績進(jìn)行統(tǒng)計(jì),結(jié)果如下表:記成績不低于70分者為“成績優(yōu)良”.

分?jǐn)?shù)

甲班頻數(shù)

5

6

4

4

1

一般頻數(shù)

1

3

6

5

5

(1)由以下統(tǒng)計(jì)數(shù)據(jù)填寫下面列聯(lián)表,并判斷能否在犯錯(cuò)誤的額概率不超過0.025的前提下認(rèn)為“成績優(yōu)良與教學(xué)方式有關(guān)”?

甲班

乙班

總計(jì)

成績優(yōu)良

成績不優(yōu)良

總計(jì)

附:,其中.

臨界值表

0.10

0.05

0.025

0.010

2.706

3.841

5.024

6.635

(2)現(xiàn)從上述40人中,學(xué)校按成績是否優(yōu)良采用分層抽樣的方法抽取8人進(jìn)行考核.在這8人中,記成績不優(yōu)良的乙班人數(shù)為,求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn,Snn2ann(n-1),n=1,2,…

(1)證明:數(shù)列{Sn}是等差數(shù)列,并求Sn

(2)設(shè),求證 :b1b2+…+bn<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某種產(chǎn)品的廣告費(fèi)支出x與銷售額y(單位:百萬元)之間有如下的對應(yīng)數(shù)據(jù):

(1)請畫出上表數(shù)據(jù)的散點(diǎn)圖;

(2)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程=x+;

參考公式:用最小二乘法求線性回歸方程系數(shù)公式 ,.)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=2x+1,x∈N*.x0,n∈N*,使f(x0)+f(x0+1)+f(x0n)=63成立,則稱(x0n)為函數(shù)f(x)的一個(gè)“生成點(diǎn)”.則函數(shù)f(x)的“生成點(diǎn)”共有(  )

A.1個(gè) B2個(gè) C.3個(gè) D4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)上的偶函數(shù), 上的奇函數(shù),且.

(1)求的解析式;

(2)若函數(shù)上只有一個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案