4.設(shè)x為實(shí)數(shù).若矩陣M=$[{\begin{array}{l}1&{-5}\\ 2&x\end{array}}]$為不可逆矩陣,求M2

分析 由矩陣M為不可逆矩陣,|M|=0,求得x的值,根據(jù)矩陣的乘法求得M2

解答 解:依題意,矩陣M=$[{\begin{array}{l}1&{-5}\\ 2&x\end{array}}]$為不可逆矩陣,
M的行列式|M|=0,解得:x=-10,
∴M2=$[{\begin{array}{l}1&{-5}\\ 2&{-10}\end{array}}][{\begin{array}{l}1&{-5}\\ 2&{-10}\end{array}}]=[{\begin{array}{l}{-9}&{45}\\{-18}&{90}\end{array}}]$,
M2=$[\begin{array}{l}{-9}&{45}\\{-18}&{90}\end{array}]$.

點(diǎn)評(píng) 本題考查矩陣可逆的條件,矩陣的乘法,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.若($\sqrt{x}$-$\frac{a}{{x}^{2}}$)n展開式中二項(xiàng)式系數(shù)之和是32,常數(shù)項(xiàng)為15,則實(shí)數(shù)a=-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖.在矩形ABCD中.AB=3$\sqrt{3}$.BC=3,沿對(duì)角線BD把△BCD折起.使C移到C′.且C′在面ABC內(nèi)的射影O恰好落在AB上.
(1)求證:AC′⊥BC′;
(2)求AB與平面BC′D所成的角的正弦值;
(3)求二面角C′-BD-A的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知n階矩陣A滿足A2=A,證明:A=I或detA=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.如圖為一個(gè)幾何體的三視圖,尺寸如圖所示,則該幾何體的表面積為( 。
A.20+2$\sqrt{5}$B.20+2$\sqrt{13}$C.18+2$\sqrt{13}$D.18+2$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知一幾何體的三視圖如圖所示,則該幾何體的體積為4;表面積為12+3$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.求證:函數(shù)f(x)=3ax2+2(a+1)x+1(a∈R)在(-1,0)內(nèi)至少有一個(gè)零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.等差數(shù)列{an}中,a1=1,d=2,則a5=( 。
A.9B.11C.16D.32

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知x>0,y>0,x+3y+xy=9,則x+3y的最小值為( 。
A.2$\sqrt{3}$B.6C.$\sqrt{13}$-2D.4

查看答案和解析>>

同步練習(xí)冊(cè)答案