A. | x=-$\frac{π}{2}$ | B. | x=-$\frac{π}{4}$ | C. | x=$\frac{π}{8}$ | D. | x=$\frac{π}{4}$ |
分析 由條件利用y=Asin(ωx+φ)的圖象變換規(guī)律,余弦函數(shù)的圖象的對稱性,得出結(jié)論.
解答 解:把函數(shù)y=sin(6x+$\frac{π}{6}$)圖象上各點(diǎn)的橫坐標(biāo)擴(kuò)大到原來的3倍(縱坐標(biāo)不變),
可得y=sin(2x+$\frac{π}{6}$)的圖象;
再將圖象向右平移$\frac{π}{3}$個單位,可得y=sin[2(x-$\frac{π}{3}$)+$\frac{π}{6}$]=sin(2x-$\frac{π}{2}$)=-cos2x的圖象,
令2x=kπ,求得x=$\frac{kπ}{2}$,k∈Z,
那么所得函數(shù)圖象的一條對稱軸方程為x=-$\frac{π}{2}$,
故選:A.
點(diǎn)評 本題主要考查誘導(dǎo)公式,y=Asin(ωx+φ)的圖象變換規(guī)律,余弦函數(shù)的圖象的對稱性,屬于基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1+$\sqrt{3}$ | B. | 2 | C. | 1 | D. | -1+$\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {x∈R|1≤x<2} | B. | {x∈R|x<1} | C. | {x∈R|2<x≤5} | D. | {x∈R|2≤x≤5} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {1,2,3} | B. | {1,2} | C. | {1} | D. | {2} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com